Question 7.16: Calculate the slope of elastic line at B and the deflection ...
Calculate the slope of elastic line at B and the deflection at point D of the beam shown in Figure 7.29.

Learn more on how we answer questions.
Let us draw the free-body diagram of the beam as shown in Figure 7.30 to determine the support reactions.
We note from free-body diagram of the beam shown in Figure 7.30(a) that for equilibrium:
\sum M_{ A }=0 \Rightarrow 20 R_{ B }=(5)(200)+15(120) \Rightarrow R_{ B }=140 kN (\uparrow)
and \sum F_y=0 \Rightarrow R_{ A }=180 kN (\uparrow)
In Figure 7.30(b), we show the equivalent loading diagram, which gives
M_x=(180) x-10 x^2+10\langle x-10\rangle^2-120\langle x-15\rangle kNm
From flexure equation, we get
(E I) \frac{ d ^2 y}{ d x^2}=-M_x=-180 x+10 x^2-10\langle x-10\rangle^2+120\langle x-15\rangle
Now integrating successively, we obtain:
(E I)\left\lgroup\frac{ d y}{ d x} \right\rgroup =-90 x^2+\frac{10}{3} x^3-\frac{10}{3}\langle x-10\rangle^3+60\langle x-15\rangle^2+C_1 (1)
and (E I) y=-30 x^3+\frac{10}{12} x^4-\frac{10}{12}\langle x-10\rangle^4+20\langle x-15\rangle^3+C_1 x+C_2 (2)
Noting the boundary conditions of y = 0 at x = 0 m and at x = 20 m, we get from Eq. (2) that:
C_2=0 \quad \text { and } \quad C_1=5625 kN m ^2
Therefore Eqs. (1) and (2) become
(E I) \frac{ d y}{ d x}=-90 x^2+\frac{10}{3} x^3-\frac{10}{3}\langle x-10\rangle^3+60\langle x-15\rangle^2+5625 (3)
and (E I) y=-30 x^3+\frac{10}{12} x^4-\frac{10}{12}\langle x-10\rangle^4+20\langle x-15\rangle^3+5625 x (4)
Putting x = 20 m in Eq. (3), we get
\left.\frac{ d y}{ d x}\right|_{x=20 m }=\left.\frac{ d y}{ d x}\right|_{ B }=\tan \theta_{ B } \approx \theta_{ B }=-\frac{5541.67}{E I}=-\frac{5541.67}{(200)\left(10^6\right)(2.5)\left(10^{-12}\right)\left(10^9\right)}
Therefore,
\theta_{ B }=-0.0111 rad ⦨
Again, putting x = 15 m in Eq. (4), we obtain
\text { (EI) }\left.y\right|_{x=15 m }=\left.24791.67 \Rightarrow y\right|_{x=15 m }=\delta_{ D }=\frac{24791.67}{(200)\left(10^6\right)(2.5)\left(10^9\right)\left(10^{-12}\right)} m
Therefore,
\delta_{ D }=0.04958 m =49.58 mm