Question 7.16: Calculate the slope of elastic line at B and the deflection ...

Calculate the slope of elastic line at B and the deflection at point D of the beam shown in Figure 7.29.

7.29
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Let us draw the free-body diagram of the beam as shown in Figure 7.30 to determine the support reactions.

We note from free-body diagram of the beam shown in Figure 7.30(a) that for equilibrium:

\sum M_{ A }=0 \Rightarrow 20 R_{ B }=(5)(200)+15(120) \Rightarrow R_{ B }=140  kN (\uparrow)

and        \sum F_y=0 \Rightarrow R_{ A }=180  kN (\uparrow)

In Figure 7.30(b), we show the equivalent loading diagram, which gives

M_x=(180) x-10 x^2+10\langle x-10\rangle^2-120\langle x-15\rangle  kNm

From flexure equation, we get

(E I) \frac{ d ^2 y}{ d x^2}=-M_x=-180 x+10 x^2-10\langle x-10\rangle^2+120\langle x-15\rangle

Now integrating successively, we obtain:

(E I)\left\lgroup\frac{ d y}{ d x} \right\rgroup =-90 x^2+\frac{10}{3} x^3-\frac{10}{3}\langle x-10\rangle^3+60\langle x-15\rangle^2+C_1           (1)

and        (E I) y=-30 x^3+\frac{10}{12} x^4-\frac{10}{12}\langle x-10\rangle^4+20\langle x-15\rangle^3+C_1 x+C_2             (2)

Noting the boundary conditions of y = 0 at x = 0 m and at x = 20 m, we get from Eq. (2) that:

C_2=0 \quad \text { and } \quad C_1=5625  kN m ^2

Therefore Eqs. (1) and (2) become

(E I) \frac{ d y}{ d x}=-90 x^2+\frac{10}{3} x^3-\frac{10}{3}\langle x-10\rangle^3+60\langle x-15\rangle^2+5625              (3)

and    (E I) y=-30 x^3+\frac{10}{12} x^4-\frac{10}{12}\langle x-10\rangle^4+20\langle x-15\rangle^3+5625 x               (4)

Putting x = 20 m in Eq. (3), we get

\left.\frac{ d y}{ d x}\right|_{x=20 m }=\left.\frac{ d y}{ d x}\right|_{ B }=\tan \theta_{ B } \approx \theta_{ B }=-\frac{5541.67}{E I}=-\frac{5541.67}{(200)\left(10^6\right)(2.5)\left(10^{-12}\right)\left(10^9\right)}

Therefore,

\theta_{ B }=-0.0111  rad

Again, putting x = 15 m in Eq. (4), we obtain

\text { (EI) }\left.y\right|_{x=15 m }=\left.24791.67 \Rightarrow y\right|_{x=15 m }=\delta_{ D }=\frac{24791.67}{(200)\left(10^6\right)(2.5)\left(10^9\right)\left(10^{-12}\right)}  m

Therefore,

\delta_{ D }=0.04958  m =49.58  mm
7.30

Related Answered Questions

Question: 7.18

Verified Answer:

From the previous problem, we note that the flexur...
Question: 7.17

Verified Answer:

We note from the given beam loading that it is a s...
Question: 7.15

Verified Answer:

Let us first draw the free-body diagram of the bea...
Question: 7.11

Verified Answer:

We draw the free-body diagram of the beam as shown...
Question: 7.8

Verified Answer:

In the problem, the load P is applied such that sy...