Question 19.4: Calculate the standard free-energy change for the following ...

Calculate the standard free-energy change for the following reaction at 25°\text{C}:

2\text{Au}(s) + 3\text{Ca}^{2+}(1.0  M) \rightleftarrows 2\text{Au}^{3+}(1.0  M) + 3\text{Ca}(s)

Strategy Use E^\circ values from Table 19.1 to calculate E^\circ for the reaction, and then use Equation 19.3 to calculate the standard free-energy change.

Setup The half-cell reactions are

Cathode  (reduction) :           3\text{Ca}^{2+}(aq) + 6e^– → 3\text{Ca}(s)

Anode  (oxidation) :           2\text{Au}(s) → 2\text{Au}^{3+}(aq) + 6e^–

From Table 19.1, E^\circ_{\text{Ca}^{2+}/\text{Ca}} = –2.87  \text{V} and E^\circ_{\text{Au}^{3+}/\text{Au}} = 1.50  \text{V}

ΔG^\circ= –nFE^\circ_{cell}            Equation 19.3

TA B L E 1 9 . 1 Standard Reduction Potentials at 25°\text{C} ^*
\text{Increasing strength as oxidizing agent}

\uparrow

Half-Reaction E°(\text{V})

\text{ncreasing strength as reducing agent}

\downarrow

\text{F}_2(\text{g}) + 2e^– → 2\text{F}^–(aq) +2.87
\text{O}_3(\text{}g) + 2\text{H}^+(aq) + 2e^– → \text{O}_2(\text{g}) + \text{H}_2\text{O}(l) +2.07
\text{Co}^{3+}(aq) + e^– → \text{Co}^{2+}(aq) +1.82
\text{H}_2\text{O}_2(aq) + 2\text{H}^+(aq) + 2e^– → 2\text{H}_2\text{O}(l) +1.77
\text{PbO}_2(s) + 4\text{H}^+(aq) + \text{SO}_4^2–(aq) + 2e^– → \text{PbSO}_4(s) + 2\text{H}_2\text{O}(l) +1.70
\text{Ce}^{4+}(aq) + e^– → \text{Ce}^{3+}(aq) +1.61
\text{MnO}_4^– (aq) + 8\text{H}^+(aq) + 5e^– → \text{Mn}^{2+}(aq) + 4\text{H}_2\text{O}(l) +1.51
\text{Au}^{3+}(aq) + 3e^– → \text{Au}(s)  +1.50
\text{Cl}_2(\text{g}) + 2e^– → 2\text{Cl}^–(aq) +1.36
\text{Cr}_2\text{O}_7^{2–}(aq) + 14\text{H}^+(aq) + 6e^– → 2\text{Cr}^{3+}(aq) + 7\text{H}_2\text{O}(l) +1.33
\text{MnO}_2(s) + 4\text{H}^+(aq) + 2e^– → \text{Mn}^{2+}(aq) + 2\text{H}_2\text{O}(l) +1.23
\text{O}_2(\text{g}) + 4\text{H}^+(aq) + 4e^– → 2\text{H}_2\text{O}(l) +1.23
\text{Br}_2(l) + 2e^– → 2\text{Br}^–(aq) +1.07
\text{NO}_3^– (aq) + 4\text{H}^+(aq) + 3e^– → \text{NO(g)} + 2\text{H}_2\text{O}(l) +0.96
2\text{Hg}^{2+}(aq) + 2e^– → \text{Hg}_2^{2+}(aq) +0.92
\text{Hg}_2^{2+}(aq) + 2e^– → 2\text{Hg}(l) +0.85
\text{Ag}^+(aq) + e^– → \text{Ag}(s) +0.80
\text{Fe}^{3+}(aq) + e^– → \text{Fe}^{2+}(aq) +0.77
\text{O}_2(\text{g}) + 2\text{H}^+(aq) + 2e^– → \text{H}_2\text{O}_2(aq) +0.68
\text{MnO}_4^– (aq) + 2\text{H}_2\text{O}(l) + 3e^– → \text{MnO}_2(s) + 4\text{OH}^–(aq) +0.59
\text{I}_2(s) + 2e^– → 2\text{I}^–(aq) +0.53
\text{O}_2(\text{g}) + 2\text{H}_2\text{O}(l) + 4e^– → 4\text{OH}^–(aq) +0.40
\text{Cu}^{2+}(aq) + 2e^– → \text{Cu}(s) +0.34
\text{AgCl}(s) + e^– → \text{Ag}(s) + \text{Cl}^–(aq) +0.22
\text{SO}_4^{2–}(aq) + 4\text{H}^+(aq) + 2e^– → \text{SO}_2(\text{g}) + 2\text{H}_2\text{O}(l) +0.20
\text{Cu}^{2+}(aq) + e^– → \text{Cu}^+(aq) +0.15
\text{Sn}^{4+}(aq) + 2e^– → \text{Sn}^{2+}(aq) +0.13
2\text{H}^+(aq) + 2e^– → \text{H}_2(\text{g}) 0.00
\text{Pb}^{2+}(aq) + 2e^– → \text{Pb}(s) –0.13
\text{Sn}^{2+}(aq) + 2e^– → \text{Sn}(s) –0.14
\text{Ni}^{2+}(aq) + 2e^– → \text{Ni}(s)  –0.25
\text{Co}^{2+}(aq) + 2e^– → \text{Co}(s) –0.28
\text{PbSO}_4(s) + 2e^– → \text{Pb}(s) + \text{SO}_4^{2–}(aq)  –0.31
\text{Cd}^{2+}(aq) + 2e^– → \text{Cd}(s) –0.40
\text{Fe}^{2+}(aq) + 2e^– → \text{Fe}(s) –0.44
\text{Cr}^{3+}(aq) + 3e^– → \text{Cr}(s) –0.74
\text{Zn}^{2+}(aq) + 2e^– → \text{Zn}(s) –0.76
2\text{H}_2\text{O}(l) + 2e^– →  \text{H}_2(\text{g}) + 2\text{OH}^–(aq) –0.83
\text{Mn}^{2+}(aq) + 2e^– → \text{Mn}(s) –1.18
\text{Al3}^+(aq) + 3e^– → \text{Al}(s) –1.66
\text{Be}^{2+}(aq) + 2e^– → \text{Be}(s)  –1.85
\text{Mg}^{2+}(aq) + 2e^– → \text{Mg}(s) –2.37
\text{Na}^+(aq) + e^– → \text{Na}(s) –2.71
\text{Ca}^{2+}(aq) + 2e^– → \text{Ca}(s) –2.87
\text{Sr}^{2+}(aq) + 2e^– → \text{Sr}(s) –2.89
\text{Ba}^{2+}(aq) + 2e^– → \text{Ba}(s) –2.90
\text{K}^+(aq) + e^– → \text{K}(s) –2.93
Li+(aq) + e– → Li(s)  –3.05
^* For all half-reactions the concentration is 1 M for dissolved species and the pressure is 1 atm for gases. These are the standard-state values.
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

E^\circ_\text{cell} = E^\circ_\text{cathode} − E^\circ_\text{anode}

= E^\circ_{\text{Ca}^{2+}/\text{Ca}} − E^\circ_{\text{Au}^{3+}/\text{Au}}

= –2.87  \text{V} − 1.50  \text{V}

= –4.37  \text{V}

Next, substitute this value of E^\circ into Equation 19.3 to obtain ∆G^\circ:

∆G^\circ = –nFE^\circ

The overall reaction shows that n = 6, so

∆G^\circ = –(6  \text{mol}  e^–)(96,500  \text{J/V ⋅ mol}  e^–)(–4.37  \text{V})

= 2.53 × 10^6  \text{J/mol}

= 2.53 × 10^3  \text{kJ/mol}

Related Answered Questions