Question 10.7: Calculate the strain energy of the shaft as shown in Figure ...
Calculate the strain energy of the shaft as shown in Figure 10.24. Assume linear elastic behaviour.

Learn more on how we answer questions.
Let us calculate the reaction torques of the given statically indeterminate truss as follows:
In Figure 10.25, we show the free-body diagram of the entire shaft and the free-body diagrams of segments AC, CD and DB. Thus, from Figure 10.25(a),
-T_{ A }+3 T+T_{ B }=0
or T_{ A }-T_{ B }=3 T (1)
We note from Figure 10.25(c) that
T_{ A }-2 T+T_{ B }+T
Now, angle of twist \theta_{ A }=\theta_{ B }=0 as both ends are fixed. Therefore, from Figures 10.24(b), (c) and (d), we get
\theta_{ C / A }=\theta_{ C }-\theta_{ A }=\theta_{ C }=\frac{T_{ A }(L / 4)}{G J}=\frac{T_{ A } L}{4 G J} (2)
\theta_{ D / C }=\theta_{ D }-\theta_{ C }=\frac{\left(T_{ B }+T\right)(L / 2)}{G J}=\frac{\left(T_{ B }+T\right) L}{4 G J} (3)
and \theta_{ B / D }=\theta_{ B }-\theta_{ D }=-\theta_{ D }=\frac{T_{ B }(L / 4)}{G J}=\frac{T_{ B } L}{4 G J} (4)
Adding Eqs. (2)–(4), we get
\begin{array}{r} \left\lgroup \frac{T_{ A }}{4}+\frac{T_{ B }+T}{2}+\frac{T_{ B }}{4} \right\rgroup \left\lgroup \frac{L}{G J} \right\rgroup =0 \\ T_{ A }+2 T_{ B }+2 T+T_{ B }=0 \end{array}
or T_{ A }+3 T_{ B }=-2 T (5)
From Eqs. (1) and (5), we obtain
-4 T_{ B }=5 T \Rightarrow T_{ B }=-\frac{5 T}{4} \Rightarrow T_{ A }=\frac{7 T}{4}
Now strain energy of the entire shaft is
U=\frac{T_{ A }^2(L / 4)}{2 G J}+\frac{\left(T_{ B }+T\right)^2(L / 2)}{2 G J}+\frac{T_{ B }^2(L / 4)}{2 G J}
Putting T_{ A }=2 T \text { and } T_{ B }=-T , we get
U=\frac{(49 / 16) T^2(L / 4)}{2 G J}+\frac{(T / 4)^2(L / 2)}{2 G J}+\frac{(5 T / 4)^2 L}{8 G J}
=\left\lgroup \frac{49}{128}+\frac{1}{64}+\frac{25}{128} \right\rgroup\left\lgroup \frac{T^2 L}{G J} \right\rgroup
or U=\frac{19}{32} \frac{T^2 L}{G J}
