Question 16.18: Calculate the support reactions in the beam shown in Fig. 16...

Calculate the support reactions in the beam shown in Fig. 16.40; the flexural rigidity, E I, of the beam is constant throughout.

16.40
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

This example differs slightly from Ex. 16.17 in that there is no fixed support and there is a cantilever overhang at the right-hand end of the beam. We therefore treat the support at \mathrm{A} in exactly the same way as the support at \mathrm{D} in the previous example. The effect of the cantilever overhang may be treated in a similar manner since we know that the final value of moment at \mathrm{D} is -5 \times 4=-20 \mathrm{kN} \mathrm{m}. We therefore calculate the FEMs M_{\mathrm{DE}}^{\mathrm{F}}(=-20  \mathrm{kNm}) and M_{\mathrm{DC}}^{\mathrm{F}}, balance the beam at \mathrm{D}, carry over to \mathrm{C} and then leave the beam at \mathrm{D} balanced and pinned; again the stiffness coefficient, K_{\mathrm{DC}}, is modified to allow for this (Case 2).

The FEMs are again calculated using the appropriate results from Table 16.6. Thus

\begin{aligned} & M_{\mathrm{AB}}^{\mathrm{F}}=-M_{\mathrm{BA}}^{\mathrm{F}}=-\frac{12 \times 14}{8}=-21  \mathrm{kNm} \\ & M_{\mathrm{BC}}^{\mathrm{F}}=-M_{\mathrm{CB}}^{\mathrm{F}}=-\frac{7 \times 4 \times 8^{2}}{12^{2}}-\frac{7 \times 8 \times 4^{2}}{12^{2}}=-18.67  \mathrm{kN} \mathrm{m} \\ & M_{\mathrm{CD}}^{\mathrm{F}}=-M_{\mathrm{DC}}^{\mathrm{F}}=-\frac{22 \times 12}{12}=-22  \mathrm{kN} \mathrm{m} \\ & M_{\mathrm{DE}}^{\mathrm{F}}=-5 \times 4=-20  \mathrm{kNm} \end{aligned}

The DFs are calculated as follows

\mathrm{DF}_{\mathrm{BA}}=\frac{K_{\mathrm{BA}}}{K_{\mathrm{BA}}+K_{\mathrm{BC}}}=\frac{3 E I / 14}{3 E I / 14+4 E I / 12}=0.39

Hence

\begin{aligned}& \mathrm{DF}_{\mathrm{BC}}=1-0.39=0.61 \\& \mathrm{DF}_{\mathrm{CB}}=\frac{K_{\mathrm{CB}}}K_{\mathrm{CB}}+K_{\mathrm{CD}}=\frac{4 E I / 12}{4 E I / 12+3 E I / 12}=0.57\end{aligned}

Hence

\mathrm{DF}_{\mathrm{CD}}=1-0.57=0.43

The solution is completed as follows:

The support reactions are now calculated in an identical manner to that in Ex. 16.17 and are

R_{\mathrm{A}}=4.18  \mathrm{kN} \quad R_{\mathrm{B}}=15.35  \mathrm{kN} \quad R_{\mathrm{C}}=17.4  \mathrm{kN} \quad R_{D}=16.07  \mathrm{kN}

TABLE 16.6

FEMs
Load case \textstyle{M}_{\mathrm{AB}}^{\mathrm{F}}

\textstyle{M}_{\mathrm{BA}}^{\mathrm{F}}

-{\frac{W L}{\mathrm{8}}}

+{\frac{W L}{\mathrm{8}}}

-{\frac{W a b^{2}}{L^2}}

+{\frac{W a^{2} b}{L^2}}

-{\frac{w L^{2}}{12}}

+{\frac{w L^{2}}{12}}

-\frac{w}{L^{2}}\left[\frac{L^{2}}{2}(b^{2}-a^{2})-\frac{2}{3}L(b^{3}-a^{3})+\frac{1}{4}(b^{4}-a^{4})\right]

+\frac{w b^{3}}{L^{2}}\left(\frac{L}{3}-\frac{b}{4}\right)

+\frac{M_{0}b}{L^{2}}(2a-b)

+\frac{M_{0}a}{L^{2}}(2b-a)

-{\frac{6EIδ}{L^2}}

-{\frac{6EIδ}{L^2}}
0

-{\frac{3EIδ}{L^2}}

table 16.18

Related Answered Questions

Question: 16.21

Verified Answer:

In this example the frame is unsymmetrical but swa...
Question: 16.15

Verified Answer:

The beam in Fig. 16.33 is the beam that was solved...