Question 6.15: Calculate the transmission coefficient Ƭ for a wave that is...

Calculate the transmission coefficient  \mathcal {T } for a wave that is propagating in the +z direction in a coaxial cable. The relative dielectric constant of the separating dielectric in the region z < 0 is 2 and in the region z > 0 is 3. The physical dimensions of the cable are the same in all regions.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Using (6.65) and the results given in Table 6-2, we write

\mathcal {T }=\frac{V_{L}}{V_{1}}=\frac{2 Z_{L}}{Z_{L}+Z_{C}}          (6.65)

Velocity of propagation Characteristic impedance
coaxial cable v=\frac{1}{\sqrt{\hat{L} \hat{C}}}=\frac{1}{\sqrt{\mu \varepsilon}} Z_{c}=\sqrt{\frac{\hat{L}}{\hat{C}}}=\sqrt{\frac{\mu}{\varepsilon}}\left(\frac{\ln \left(\frac{b}{a}\right)}{2 \pi}\right)
microstrip line v=\frac{1}{\sqrt{\hat{L} \hat{C}}}=\frac{1}{\sqrt{\mu \varepsilon}} Z_{c}=\sqrt{\frac{\hat{L}}{\hat{C}}}=\sqrt{\frac{\mu}{\varepsilon}}\left(\frac{d}{w}\right)
twin lead v=\frac{1}{\sqrt{\hat{L} \hat{C}}}=\frac{1}{\sqrt{\mu \varepsilon}} Z_{c}=\sqrt{\frac{\hat{L}}{\hat{C}}}=\sqrt{\frac{\mu}{\varepsilon}}\left(\frac{\cosh ^{-1}\left(\frac{D}{2 a }\right)}{\pi}\right)
Table 6-2. The velocity of propagation and the characteristic impedance of the various transmission lines shown in Figure 6-1. The parameters for the material between the two conductors are the permeability µ = µrµo and the permittivity ε = εrεo.

\mathcal {T }=\frac{2 \sqrt{\frac{\mu}{3 \varepsilon_{0}}}\left(\frac{\ln \left(\frac{b}{a}\right)}{2 \pi}\right)}{\sqrt{\frac{\mu}{3 \varepsilon_{0}}}\left(\frac{\ln \left(\frac{b}{a}\right)}{2 \pi}\right)+\sqrt{\frac{\mu}{2 \varepsilon_{0}}}\left(\frac{\ln \left(\frac{b}{a}\right)}{2 \pi}\right)}=\frac{\frac{2}{\sqrt{3}}}{\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{2}}}=0.9

6-1

Related Answered Questions