Question 3.17: CALCULATING AN EMPIRICAL FORMULA AND A MOLECULAR FORMULA FRO...

CALCULATING AN EMPIRICAL FORMULA AND A MOLECULAR FORMULA FROM A COMBUSTION ANALYSIS

Caproic acid Caproic acid, the substance responsible for the aroma of goats, dirty socks, and old shoes, contains carbon, hydrogen, and oxygen. On combustion analysis, a 0.450 g sample of caproic acid gives 0.418 g of H2OH_{2}O and 1.023 g of CO2CO_{2}. What is the empirical formula of caproic acid? If the molecular mass of caproic acid is 116.2 amu, what is the molecular formula?

STRATEGY
Use the steps outlined in Figure 3.8 to find the empirical formula of caproic acid. Then calculate a formula mass and compare it to the known molecular mass.

fig 3.8
cap
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

First, find the molar amounts of C and H in the sample:

Moles of C = 1.023 g CO2 × 1 mol CO244.01 g CO2 × 1 mol C1 mol CO2Moles  of  C  =  1.023  \cancel{g  CO_{2}}  ×  \frac{1  \cancel{mol  CO_{2}}}{44.01  \cancel{g  CO_{2}}}  ×  \frac{1  mol  C}{1  \cancel{mol  CO_{2}}} = 0.023 24 mol C

Moles of H = 0.418 g H2O × 1 mol H2O18.02 g H2O × 2 mol H1 mol H2OMoles  of  H  =  0.418  \cancel{g  H_{2}O}  ×  \frac{1  \cancel{mol  H_{2}O}}{18.02  \cancel{g  H_{2}O}}  ×  \frac{2  mol  H}{1  \cancel{mol  H_{2}O}} = 0.0464 mol H

Next, find the number of grams of C and H in the sample:

Moles of C = 0.02324 mol C × 12.01 g C1 mol CMoles  of  C  =  0.023 24  \cancel{mol  C}  ×  \frac{12.01  g  C}{1  \cancel{mol  C}} = 0.2791 g C

Moles of H = 0.0464 mol H × 1.01 g H1 mol HMoles  of  H  =  0.0464  \cancel{mol  H}  ×  \frac{1.01  g  H}{1  \cancel{mol  H}} = 0.0469 g H

Subtracting the masses of C and H from the mass of the starting sample indicates that 0.124 g is unaccounted for:

0.450 g – (0.2791 g + 0.0469 g) = 0.124 g

Because we are told that oxygen is also present in the sample, the “missing” mass must be due to oxygen, which can’t be detected by combustion. We therefore need to find the number of moles of oxygen in the sample:

Moles of O = 0.124 g O × 1 mol O16.00 g O\cancel{g  O}  ×  \frac{1  mol  O}{16.00  \cancel{g  O}} = 0.007 75 mol O

Knowing the relative numbers of moles of all three elements, C, H, and O, we divide the three numbers of moles by the smallest number (0.007 75 mol of oxygen) to arrive at a C:H:O ratio of 3:6:1.

C(0.023240.00775)H(0.04640.00775)O(0.007750.00775) = C3H6OC_{\left( \frac{0.02324}{0.00775}\right)}H_{\left(\frac{0.0464}{0.00775}\right) }O_{\left(\frac{ 0.00775}{0.00775}\right)}  =  C_{3}H_{6}O

The empirical formula of caproic acid is therefore C3H6OC_{3}H_{6}O, and the empirical formula mass is 58.1 amu. Because the molecular mass of caproic acid is 116.2, or twice the empirical formula mass, the molecular formula of caproic acid must be

C(2×3)H(2×6)O(2×1) = C6H12O2C_{(2×3)}H_{(2×6)}O_{(2×1)}  =  C_{6}H_{12}O_{2}.

Related Answered Questions