Question 14.11: CALCULATING THE pH AND THE EQUILIBRIUM CONCENTRATIONS IN A S...

CALCULATING THE pH AND THE EQUILIBRIUM CONCENTRATIONS IN A SOLUTION OF A DIPROTIC ACID

Calculate the pH and the concentrations of all species present (H_{2}CO_{3},  HCO_{3}^{-},  CO_{3}^{2-},  H_{3}O^{+},  and  OH^{-}) in a 0.020 M carbonic acid solution.

STRATEGY
Use the eight-step procedure summarized in Figure 14.6. The values of K_{a1}  and  K_{a2} may be found in Table 14.3.

TABLE 14.3  Stepwise Dissociation Constants for Polyprotic Acids at 25 °C

Name                               Formula                           K_{a1}                    K_{a2}                    K_{a3}
Carbonic acid                   H_{2}CO_{3}                  4.3 × 10^{-7}           5.6 × 10^{-11}

Hydrogen sulfide*          H_{2}S                        1.0 × 10^{-7}             ∼10^{-19}

Oxalic acid                      H_{2}C_{2}O_{4}                5.9 × 10^{-2}           6.4 × 10^{-5}

Phosphoric acid            H_{3}PO_{4}                    7.5 × 10^{-3}              6.2 × 10^{-8}          4.8 × 10^{-13}

Sulfuric acid                  H_{2}SO_{4}                    Very large          1.2× 10^{-2}

Sulfurous acid                H_{2}SO_{3}                    1.5 × 10^{-2}            6.3 × 10^{-8}

^{*}Because of its very small size, K_{a2} for H_{2}S is difficult to measure and its value is uncertain.

fig 14.66
carb
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Steps 1–3. The species present initially are H_{2}CO_{3}  (acid)  and  H_{2}O (acid or base).

Because K_{a1}  >>  K_{w}, the principal reaction is the dissociation of H_{2}CO_{3}.

Step 4.

Step 5. Substituting the equilibrium concentrations into the equilibrium equation for the principal reaction gives

K_{a1}  =  4.3  ×  10^{-7}  =  \frac{[H_{3}O^{+}][HCO_{3}^{-}]}{[H_{2}CO_{3}]}  =  \frac{(x)(x)}{(0.020  –  x)}

Assuming that (0.020 – x) ≈ 0.020,

x^{2}  =  (4.3  ×  10^{-7})(0.020)

x = 9.3 × 10^{-5}       Approximation (0.020 – x) ≈ 0.020 is justified.

Step 6. The big concentrations are

[H_{3}O^{+}]  =  [HCO_{3}^{-}]  =  x  =  9.3  ×  10^{-5} M

[H_{2}CO_{3}] = 0.020 – x = 0.020 – 0.000 093 = 0.020 M

Step 7. The small concentrations are obtained from the subsidiary equilibria—(1) dissociation of HCO_{3}^{-} and (2) dissociation of water—and from the big concentrations already determined:

(1)      HCO_{3}^{-}(aq)  +  H_{2}O(l)  \rightleftharpoons  H_{3}O^{+}(aq)  +  CO_{3}^{2-}(aq)

K_{a2}  =  5.6  ×  10^{-11}  =  \frac{[H_{3}O^{+}][CO_{3}^{2-}]}{[HCO_{3}^{-}]}  =  \frac{(9.3  ×  10^{-5})[CO_{3}^{2-}]}{9.3  ×  10^{-5}}

[CO_{3}^{2-}]  =  K_{a2}  =  5.6  ×  10^{-11} M

(In general, for a solution of a weak diprotic acid that has a very small value of K_{a2},

[A^{2-}]  =  K_{a2}.)

(2)    [OH^{-}]  =  \frac{K_{w}}{[H_{3}O^{+}]}  =  \frac{1.0  ×  10^{-14}}{9.3  ×  10^{-5}}  =  1.1  ×  10^{-10} M

The second dissociation of H_{2}CO_{3} produces a negligible amount of H_{3}O^{+} compared with the H_{3}O^{+} obtained from the first dissociation. Of the 9.3 × 10^{-5}  mol/L of HCO_{3}^{-} produced by the first dissociation, only 5.6 × 10^{-11} mol/L dissociates to form H_{3}O^{+} and CO_{3}^{2-}.

Step 8.  pH = -log [H_{3}O^{+}] = -log (9.3 × 10^{-5}) = 4.03

BALLPARK CHECK
When the value of x can be neglected compared with the initial concentration of the acid (Step 5), the [H_{3}O^{+}] equals the square root of the product of K_{a1} and the initial concentration of the acid. In this problem, [H_{3}O^{+}]  is the square root of approximately (4  ×  10^{-7})(2  ×  10^{-2}) , or about 10^{-4}. Therefore, the pH ≈ 4, in agreement with the solution.

Principal reaction                            H_{2}CO_{3}(aq)  +  H_{2}O(l)  \rightleftharpoons   H_{3}O^{+}(aq)  +  HCO_{3}^{-}(aq)
Initial concentration (M)                0.020                                                 ∼0                   0

Change (M)                                         -x                                                         +x                  +x

Equilibrium concentration (M)    0.020 – x                                                x                    x

Related Answered Questions

Question: 14.16

Verified Answer:

Step 1. The species present initially are N...
Question: 14.15

Verified Answer:

Steps 1–4. The species present initially are [late...