Question 14.13: CALCULATING THE pH AND THE EQUILIBRIUM CONCENTRATIONS IN A S...

CALCULATING THE pH AND THE EQUILIBRIUM CONCENTRATIONS IN A SOLUTION OF A WEAK BASE

Codeine (C_{18}H_{21}NO_{3}), a drug used in painkillers and cough medicines, is a naturally occurring amine that has K_{b}  =  1.6  ×  10^{-6}. Calculate the pH and the concentrations of all species present in a 0.0012 M solution of codeine.

STRATEGY
Use the procedure outlined in Figure 14.6.

fig 14.66
ced
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Step 1. Let’s use Cod as an abbreviation for codeine and CodH^{+} for its conjugate acid.

The species present initially are Cod (base) and H_{2}O (acid or base).

Step 2. There are two possible proton-transfer reactions:

Cod(aq)  +  H_{2}O(l)  \rightleftharpoons   CodH^{+}(aq)  +  OH^{-}(aq)          K_{b}  =  1.6  ×  10^{-6}

 

H_{2}O(l)  +  H_{2}O(l)  \rightleftharpoons  H_{3}O^{+}(aq)  +  OH^{-}(aq)          K_{w}  =  1.0  ×  10^{-14}

Step 3. Since Cod is a much stronger base than H_{2}O (K_{b}  >>  K_{w}), the principal reaction involves the protonation of codeine.

Step 4.

Step 5. The value of x is obtained from the equilibrium equation:

K_{b}  =  1.6  ×  10^{-6}  =  \frac{[CodH^{+}][OH^{-}]}{[Cod]}  =  \frac{(x)(x)}{(0.0012  –  x)}

Assuming that (0.0012 – x) ≈ 0.0012,

x² = (1.6 × 10^{-6})(0.0012)

x = 4.4 × 10^{-5}         Approximation   (0.0012 – x) ≈ 0.0012 is justified.

Step 6. The big concentrations are

[CodH^{+}]  =  [OH^{-}]  =  x  =  4.4  ×  10^{-5} M

[Cod] = 0.0012 – x = 0.0012 – 0.000 044 = 0.0012 M

Step 7. The small concentration is obtained from the subsidiary equilibrium, the dissociation of water:

[H_{3}O^{+}]  =  \frac{K_{w}}{[OH^{-}]}  =  \frac{1.0  ×  10^{-14}}{4.4  ×  10^{-5}}  =  2.3  ×  10^{-10} M

Step 8.  pH = -log [H_{3}O^{+}]  =  -log (2.3  ×  10^{-10}) = 9.64

The pH is greater than 7, as expected for a solution of a weak base.

BALLPARK CHECK
Because is negligible compared with the initial concentration of codeine (Step 5), the [OH^{-}] equals the square root of the product of K_{b} and the initial concentration of codeine. [OH^{-}] Therefore, equals the square root of approximately (16 × 10^{-7}) × (1 × 10^{-3}), or about 4 × 10^{-5}. Since the [OH^{-}] is between 10^{-5} M and 10^{-4} M, the [H_{3}O^{+}] is between 10^{-9} M and 10^{-10} M, and so the pH is between 9 and 10. The ballpark check and the solution agree.

Principal reaction                              Cod(aq)  +  H_{2}O(l)  \rightleftharpoons  CodH^{+}(aq)  +  OH^{-}(aq)
Initial concentration (M)                  0.0012                                         0                        ∼0

Change (M)                                             -x                                             +x                        +x

Equilibrium concentration (M)      0.0012 – x                                     x                           x

Related Answered Questions

Question: 14.16

Verified Answer:

Step 1. The species present initially are N...
Question: 14.15

Verified Answer:

Steps 1–4. The species present initially are [late...