Question 10.10: Canister carbon systems are typically used for emission stre...

Canister carbon systems are typically used for emission stream flow rates less than 2000 scfm. The adsorption time in this example is based on the total volume of recovered solvent. The HAP pollutant is acetone and the given data are as follows:

Maximum flow rate, Q_{e}                                                    = 2000 scfm
Temperature, T_{e}                                                                  = 90ºF
Relative humidity, R_{hum}                                                   = 40\%
Required removal efficiency, RE                                    = 90\%
HAP emission stream concentration, HAP_{e}             = 700 ppmv
Adsorption time, θ_{ad}                                                         = 40 h

Determine the HAP density (D_{HAP}), the HAP inlet loading (M_{HAP}), the carbon requirement (C_{req}), and the required carbon canister number (RCN) for proper treatment of the air emission stream.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The HAP density, D_{HAP}, is calculated first using

D_{HAP} = PM/RT                                                                              (9)
D_{HAP} = (1 atm) (58 lb/lb-mole)/(0.7302 ft³ atm/lb-moleºR)(460+90)(ºR)
D_{HAP} = 0.144 lb/ ft³

Using Eq. (4), the inlet HAP loading, M_{HAP}, is determined:

M_{HAP} = 6.0 \times 10^{−5} (HAP_{e})(Q_{e})(D_{HAP})                                   (4)
M_{HAP} = 6.0 \times 10^{−5} (700 ppmv of acetone)(2,000 ft³/min) (0.144 lb/ft³)
M_{HAP} = 12.10 lb acetone/h

The carbon requirement, C_{req}, is determined using

C_{req} = M_{HAP}  θ_{ad} /W_{c}                                                                        (11)

The working capacity value, W_{c}, is usually 50\% of the equilibrium capacity (W_{e}). Using Eq. (1) and values from Table 1, the W_{e} is calculated as follows:

W_{e} = k  (P_{partial})^{m}                                                                               (1)

where

P_{partial} = (HAP_{e}) (14.696 \times 10^{−6})                                                           (2)
P_{partial} = (HAP_{e}) (14.696 \times 10^{−6}) = (700 ppmv) (14.696 \times 10^{−6}) = 0.01029 psia

Table 1
Parameters for Selected Adsorption Isotherms^{a}
Adsorbate Adsorption
Temperature
(ºF)
Isotherm
parameters
Range of
isotherm^{b}
(psia)
k m
1. Benzene 77 0.597 0.176 0.0001–0.05
2. Chlorobenzene 77 1.05 0.188 0.0001–0.01
3. Cyclohexane 100 0.508 0.210 0.0001–0.05
4. Dichloroethane 77 0.976 0.281 0.0001–0.04
5. Phenol 104 0.855 0.153 0.0001–0.03
6. Trichloroethane 77 1.06 0.161 0.0001–0.04
7. Vinyl chloride 100 0.20 0.477 0.0001–0.05
8. m-Xylene 77 0.708 0.113 0.0001–0.001
77 0.527 0.0703 0.001–0.05
9. Acrylonitrile 100 0.935 0.424 0.0001–0.015
10. Acetone 100 0.412 0.389 0.0001–0.05
11. Toluene 77 0.551 0.110 0.0001–0.05

Note: _{}^{a}\textrm{Each} isotherm is of the form: W_{e} = kP^{m}. (See text for definition of terms).
Data are for adsorption on Calgon-type “BPL” carbon (4 \times 10 mesh).
_{}^{b}\textrm{Equations }should not be extrapolated outside of these ranges

Then, from Eq. (1), the equilibrium capacity is obtained.

W_{e} = k  (P_{partial})^{m}                                                                               (1)

From Table 1, k = 0.412 and m = 0.389.

Substituting these values into Eq.(1) yields the equilibrium capacity:

W_{e} = (0.412) (0.01029  psia)^{0.389}
W_{e} = 0.06945 lb acetone/lb carbon

Because the working capacity, W_{c}, is usually 50\% of equilibrium capacity (W_{e}),

W_{c} = 0.50  W_{e} = 0.50 (0.069 lb acetone/lb carbon) = 0.0345 lb acetone/lb carbon

The carbon requirement is calculated using

C_{req} = M_{HAP}  θ_{ad} /W_{c}                                                                        (11)
C_{req} = (12.10 lb of acetone/h)(40 h)/(0.0345 lb acetone/lb carbon)
C_{req} = 14,029 lb of carbon

Typically, each canister contains 150 lb of carbon; therefore, the required canister number (RCN) is calculated as follows:

RCN = (14,029 lb carbon)/(150 lb carbon/canister)
RCN = 93.5 canisters, therefore use 94 canisters

Related Answered Questions

Question: 10.7

Verified Answer:

The carbon requirement for a canister system can b...
Question: 10.4

Verified Answer:

The methodology for determining the carbon adsorpt...