Question 18.10: Carbon dioxide is a linear triatomic molecule that has the f...

Carbon dioxide is a linear triatomic molecule that has the following characteristic temperatures

Θ_r = 0.562  \text{K}

Θ_{v1} = 1932  \text{K}

Θ_{v2} = Θ_{v3} = 960.  \text{K}

Θ_{v4} = 3380  \text{K}

Determine the specific internal energy, specific enthalpy, and specific entropy of \text{CO}_2 at a temperature of 1000.  \text{K} and a pressure of 1.00  \text{atm}.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The mass of the \text{CO}_2 molecule is

m = M/\text{N}_o = 44.01/6.023 × 10^{26} = 7.31 × 10^{−26}  \text{kg/molecule}

and the gas constant for \text{CO}_2 is

R = ℜ/M = 8.3143/44.01 = 0.1889  \text{KJ/(kg.K)}

Equation (18.56) gives the vibrational specific internal energy at absolute zero temperature as

(u_o)_\text{vib} = \sum\limits_{i=1}^{3b−5} RΘ_{vi}/2                (18.56)

(u_o)_\text{vib} = (0.1889) (1932 + 960. + 960. + 3380)/2 = 683  \text{kJ/kg}

and Eq. (18.55a) gives the vibrational component of the specific internal energy as

u_\text{vib} = (u_o)_\text{vib} + R \sum\limits_{i=1}^{3b−5} \frac{Θ_{vi}}{[\text{exp}  (Θ_{vi}/T) -1]}            (18.55a)

u_\text{vib} = 683 + (0.1889) \left\{(1932) [\text{exp} (1.932) −1]^{-1} + 2 (960) [\text{exp} (0.960.) −1]^{-1} + (3380) [\text{exp} (3.380) −1]^{-1}\right\} = 992  \text{kJ/kg}

The translational and rotational components are given by Eqs. (18.49a) and (18.49b) as

u_\text{trans} = \frac{3}{2} RT = \frac{3}{2} (0.1889) (1000.) = 283.4  \text{kJ/kg}

u_\text{rot} = RT = (0.1889) (1000.) = 188.9  \text{kJ/kg}

Then,

u = u_\text{trans} + u_\text{rot} + u_\text{vib} = 283.4 + 188.9 + 992 = 1465  \text{kJ/k}

The specific enthalpy is now given simply by

h = u + RT = 1465 + (0.1889) (1000.) = 1654  \text{kJ/kg}

The translational and rotational specific entropy values are calculated from Eqs. (18.54a) and (18.54b). First, we calculate

s_\text{trans} = R \left\{\text{ln}  [(2πm/ħ^2)^{3/2} (kT)^{5/2} /p] + \frac{5}{2}\right\}                (18.54a)

s_\text{rot} = R \left\{\text{ln}  [T/ (σ Θ_r)] + 1\right\}               (18.54b)

(2πm/ħ^2)^{3/2} (kT)^{5/2} /p = [ 2π(7.31 × 10^{–26}) / (6.626 × 10^{–34})^{2}]^{3/2}

× [(1.38 × 10^{–23}) (1000)]^{5/2} /101,325

= 2.36 × 10^8  \text{per molecule}

and then Eq. (18.54a) gives

s_\text{trans} =(0.1889) [\text{ln}  (2.36 × 10^8) + \frac{5}{2}]  = 4.11  \text{kJ/(kg.K)}

and Eq. (18.54b) with σ = 2 from Table 18.9 gives

Table 18.9   Rotational Symmetry Number for Some Simple Materials
Material σ
Any diatomic molecule with two different atoms (e.g., \text{HCl, HI}, or \text{NO}) 1
Any diatomic molecule with two identical atoms (e.g., \text{H}_2, \text{O}_2, or \text{N}_2) 2
Any triatomic molecule with two different atoms forming an isosceles triangle (such as \text{H}_2\text{O}) or any linear triatomic 2
molecule (e.g., \text{CO}_2 or \text{NO}_2,)
Any quatratomic molecule with two different atoms forming an equilateral triangular pyramid (e.g., \text{NH}_3) 3
Any molecule forming a plane rectangle (e.g., \text{C}_2\text{H}_4) 4
Any pentatomic molecule with two different atoms forming a regular tetrahedron with the carbon atom at the center of 12
mass (e.g., \text{CCl}_4 or \text{CH}_4)

s_\text{rot} =(0.1889) \left\{[\text{ln}  [1000 / (2) (0.562) ]+ 1\right\}  = 1.47  \text{kJ/(kg.K)}

Equation (18.55e) is then used to find the vibrational component of the specific entropy as

s_\text{vib} = R \sum\limits_{i=1}^{3b−5}\left\{\text{ln} [1−  \text{exp} (−Θ_{vi}/T)]^{-1} + (Θ_{vi}/T) / [\text{exp} (Θ_{vi}/T) -1]\right\}              (18.55e)

s_\text{vib} = (0.1889) \left\{\text{ln} [ 1−  \text{exp} (−1.932)]^{-1} + (1.932) [\text{exp} (1.932) -1]^{-1}\right\}

+ \text{ln} [ 1−  \text{exp} (−0.960)]^{-1} + (0.960) [\text{exp} (0.960) -1]^{-1}

+ \text{ln} [ 1−  \text{exp} (−0.960)]^{-1} + (0.960) [\text{exp} (0.960) -1]^{-1}

+ \text{ln} [ 1−  \text{exp} (− 3.380)]^{-1} + (3.380) [\text{exp} (3.380) -1]^{-1}

= 0.527  \text{kJ/(kg.K)}

Then, the specific entropy is

s = s_\text{trans} + s_\text{rot} + s_\text{vib} = 4.11 + 1.47 + 0.527 = 6.11  \text{kJ/(kg.K)}

Related Answered Questions