Question 7.13: Carbon monoxide and hydrogen are used to produce methanol (C...

Carbon monoxide and hydrogen are used to produce methanol (CH_{4}O). The balanced chemical reaction is

CO(g) + 2H_{2}(g) → CH_{4}O(g)

If 3.00 moles of CO and 5.00 moles of H_{2} are the initial reactants, what is the limiting reactant, and how many moles of methanol can be produced?

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

STEP 1   State the given and needed quantities (moles).

ANALYZE THE PROBLEM Given Need Connect
3.00 moles of CO, 5.00 moles of H_{2} moles of CH_{4}O produced, limiting reactant mole-mole factors
Equation
CO(g) + 2H_{2}(g) → CH_{4}O(g)

STEP 2 Write a plan to convert the quantity (moles) of each reactant to quantity (moles) of product.

moles  of  CO      \boxed{\begin{array}{l}\text{Mole-mole}\\\text{factor}\end{array}} →      moles  of  CH_{4}O moles  of  H_{2}     \boxed{\begin{array}{l}\text{Mole-mole}\\\text{factor}\end{array}} →      moles  of  CH_{4}O

STEP 3  Use coefficients to write mole-mole factors.

\begin{array}{r c}\boxed{\begin{matrix} 1  mole  of  CO = 1  mole  of  CH_{4}O \\\frac{1  mole  CO}{1  mole  CH_{4}O} \text{ and } \frac{1  mole  CH_{4}O}{1  mole  CO} \end{matrix}} & \boxed{\begin{matrix} 2  moles  of  H_{2} = 1  mole  of  CH_{4}O\\ \frac{2  moles  H_{2}}{ 1  mole  CH_{4}O}\text{ and }\frac{ 1  mole  CH_{4}O}{2  moles  H_{2}} \end{matrix}}\end{array}

STEP 4 Calculate the quantity (moles) of product from each reactant, and select the smaller quantity (moles) as the limiting reactant.
Moles of CH_{4}O (product) from CO:

\underset{Three  SFs }{3.00  \cancel{moles  CO}}     \times    \overset{Exact}{\underset{Exact}{\boxed{\frac{1  mole  CH_{4}O}{1  \cancel{  mole  CO}} }}}   = \underset{Three  Sfs }{3.00  moles  of  CH_{4}O}

Moles of CH_{4}O (product) from H_{2} :

\overset{Three  SFs}{\underset{Limiting  reactant }{5.00  \cancel{moles  H_{2}}}}     \times    \overset{Exact}{\underset{Exact}{\boxed{\frac{1  mole  CH_{4}O}{2  \cancel{  moles  H_{2}}} }}}   = \underset{Three  Sfs }{2.50  moles  of  CH_{4}O}        \begin{array}{l} \text{Smaller amount}\\ \text{of product}\end{array} 

The smaller amount, 2.50 moles of CH_{4}O, is the maximum amount of methanol that can be produced from the limiting reactant, H_{2} , because it is completely consumed.

Related Answered Questions

Question: 7.10

Verified Answer:

STEP 1   State the given and needed quantities. ...
Question: 7.8

Verified Answer:

ANALYZE THE PROBLEM Given Need Connect formula o...
Question: 7.7

Verified Answer:

STEP 1   State the given and needed quantities. ...