Question 15.SP.5: Collars A and B are pin-connected to bar ABD and can slide a...

Collars A and B are pin-connected to bar ABD and can slide along fixed rods. Knowing that at the instant shown the velocity of A is 0.9 m/s to the right, determine (a) the angular velocity of ABD, (b) the velocity of point D.

STRATEGY: Use the kinematic equation that relates the velocity of two points on the same rigid body. Because you know the directions of the velocities of points A and B, choose these two points to relate.

Screenshot 2022-11-15 093833
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

MODELING and ANALYSIS: Model bar ABD as a rigid body. From kinematics you know

\mathbf{v}_B=\mathbf{v}_A  +  \mathbf{v}_{B / A}=\mathbf{v}_A  +  \boldsymbol{\omega} \times \mathbf{r}_{B / A}

Substituting in known values (Fig. 1) and assuming  \boldsymbol{\omega}=\omega \mathbf{k}  gives you

\begin{aligned}v_B \cos 60^{\circ} \mathbf{i}  +  v_B \sin 60^{\circ} \mathbf{j}=(0.9)  \mathbf{i}+\\\omega \mathbf{k} \times\left[\left(0.3 \cos 30^{\circ}\right) \mathbf{i}  +  \left(0.3 \sin 30^{\circ}\right) \mathbf{j}\right] \\0.500 v_B \mathbf{i}  +  0.866 v_B \mathbf{j}=(0.9  –  0.15 \omega) \mathbf{i}  +  0.260 \omega \mathbf{j}\end{aligned}

Equating components,

\begin{aligned}\mathrm{i}: &=0.500 v_B=0.9  –  0.15 \omega \\\mathrm{j}: &=0.866 v_B=0.260 \omega\end{aligned}

Solving these equations gives you  v_B = 0.900 m/s and ω = 3.00 rad/s

\omega=3.00  \mathrm{rad} / \mathrm{s}\Lsh

Velocity of D. The relationship between the velocities of A and D is

\mathbf{v}_D=\mathbf{v}_A  +  \mathbf{v}_{D / A}=\mathbf{v}_D  +  \omega \times \mathbf{r}_{D / A}

Substituting in values from above gives

\begin{aligned}&\mathbf{v}_D=(0.9)  \mathbf{i}  +  3.00  \mathbf{k} \times\left[\left(0.6 \cos 30^{\circ}\right) \mathbf{i}  +  \left(0.6 \sin 30^{\circ}\right) \mathbf{j}\right] \\&\mathbf{v}_D=(0.9  –  0.9) \mathbf{i}  +  1.559  \mathbf{j}\end{aligned}

\mathbf{v}_D=1.559  \mathrm{~m} / \mathrm{s} \uparrow

REFLECT and THINK: The velocity of point D is straight up at this instant in time, but as the bar continues to rotate counterclockwise, the direction of the velocity of D will continuously change.

Screenshot 2022-11-15 093926

Related Answered Questions