Question A.5: Complex Arithmetic in Polar Form Given Z1 = 10∠60° and Z2 = ...
Complex Arithmetic in Polar Form
Given Z1 = 10∠60° and Z2 = 5∠45°, find Z1Z2, Z1/Z2, and Z1 + Z2 in polar form.
Learn more on how we answer questions.
For the product, we have
Z_1\times Z_2=10\angle 60^\circ\times 5\angle 45^\circ=50\angle 105^\circ
Dividing the numbers, we have
\frac{Z_1}{Z_2}=\frac{10\angle60^\circ}{5\angle 45^\circ}=2\angle 15^\circ
Before we can add (or subtract) the numbers, we must convert them to rectangular form. Using Equation A.14 to convert the polar numbers to rectangular, we get
A\angle\theta=Ae^{j\theta}=A\cos{(\theta)}+jA\sin{(\theta)} (A.14)
Z_1=10\angle 60^\circ=10\cos{60^\circ}+j10\sin{(60^\circ)}=5+j8.66
Z_2=5\angle 45^\circ=5\cos{45^\circ}+j5\sin{(45^\circ)}=3.54+j3.54
Now, we can add the numbers. We denote the sum as Zs:
Z_s=Z_1+Z_2=5+j8.66+3.54+j3.54=8.54+j12.2
Next, we convert the sum to polar form:
\left|Z_s\right|=\sqrt{\left(8.54\right)^2+\left(12.2\right)^2 }=14.9
\tan{\theta_s}=\frac{12.2}{8.54}=1.43
Taking the arctangent of both sides, we have
\theta_s=\arctan{(1.43)}=55^\circ
Because the real part of Zs is positive, the correct angle is the principal value of the arctangent (i.e., 55° is the correct angle). Thus, we obtain
Z_s=Z_1+Z_2=14.9\angle 55^\circ