Question 17.15: Complex Ion Equilibria You mix a 200.0-mL sample of a soluti...
Complex Ion Equilibria
You mix a 200.0-mL sample of a solution that is 1.5 ×10^{-3} M in Cu(NO_3)_2 with a 250.0-mL sample of a solution that is 0.20 M in NH_3. After the solution reaches equilibrium, what concentration of Cu^{2+}(aq) remains?
Learn more on how we answer questions.
Write the balanced equation for the complex ion equilibrium that occurs and look up the value of K_f in Table 17.3. Since this is an equilibrium problem, you have to create an ICE table, which requires the initial concentrations of Cu^{2+}and NH_3 in the combined solution. Calculate those concentrations from the given values.
Cu^{2+}(aq) + 4 NH_3(aq) \rightleftharpoons Cu(NH_3)_4^{2+}(aq)
K_f= 1.7 \times 10^{13}
[Cu^{2+}]_{initial}=\frac{0.200\cancel{L}\times \frac{1.5\times 10^{-3} \ mol}{\cancel{L}} }{0.200 L + 0.250 L}=6.7\times 10^{-4} \ M
[NH_3]_{initial}=\frac{0.250\cancel{L}\times \frac{0.20 \ mol}{1\cancel{L}} }{0.200 L + 0.250 L}=0.11 \ M
Construct an ICE table for the reaction and write down the initial concentrations of each species.
Cu^{2+}(aq) + 4 NH_3(aq) \rightleftharpoons Cu(NH_3)_4^{2+}(aq)
[Cu^{2+}] | [NH_3] | Cu(NH_3)_4^{2+} | |
Initial | 6.7 \times 10^{-4} | 0.11 | 0.0 |
Change | |||
Equil |
Since the equilibrium constant is large and the concentration of ammonia is much larger than the concentration of Cu^{2+}, you can assume that the reaction will be driven to the right so that most of the Cu^{2+} is consumed. Unlike in previous ICE tables, where you let x represent the change in concentration in going to equilibrium, here you let x represent the small amount of Cu^{2+} that remains when equilibrium is reached.
Cu^{2+}(aq) + 4 NH_3(aq) \rightleftharpoons Cu(NH_3)_4^{2+}(aq)
[Cu^{2+}] | [NH_3] | Cu(NH_3)_4^{2+} | |
Initial | 6.7 \times 10^{-4} | 0.11 | 0.0 |
Change | ≈(-6.7 \times 10^{-4}) | ≈4(-6.7 \times 10^{-4}) | ≈(+6.7 \times 10^{-4}) |
Equil | x | 0.11 | 6.7 \times 10^{-4} |
Substitute the expressions for the equilibrium concentrations into the expression for K_f and solve for x.
K_f=\frac{[Cu(NH_3)_4^{2+}]}{[Cu^{2+}][NH_3]_4}
=\frac{6.7 \times 10^{-4}}{x(0.11)^4}
x =\frac{6.7 \times 10^{-4}}{K_f(0.11)^4}
x =\frac{6.7 \times 10^{-4}}{1.7 \times 10^{13}(0.11)^4}
= 2.7 \times 10^{-13}
Confirm that x is indeed small compared to the initial concentration of the metal cation.
The remaining Cu^{2+} is very small because the formation constant is very large.
Since x = 2.7 \times 10^{-13} « 6.7 \times 10^{-4} , the approximation is valid.
The remaining [Cu^{2+}] = 2.7 \times 10^{-13} M.
Complex Ion | Kf | Complex Ion | Kf |
Ag(CN)2– | 1 * 1021 | Cu(NH3)42+ | 1.7 * 1013 |
Ag(NH3)2+ | 1.7 * 107 | Fe(CN)64– | 1.5 * 1035 |
Ag(S2O3)23– | 2.8 * 1013 | Fe(CN)63– | 2 * 1043 |
AlF63– | 7 * 1019 | Hg(CN)42– | 1.8 * 1041 |
Al(OH)4– | 3 * 1033 | HgCl42– | 1.1 * 1016 |
CdBr42– | 5.5 * 103 | HgI42– | 2 * 1030 |
CdI42– | 2 * 106 | Ni(NH3)62+ | 2.0 * 108 |
Cd(CN)42– | 3 * 1018 | Pb(OH)3– | 8 * 1013 |
Co(NH3)63+ | 2.3 * 1033 | Sn(OH)3– | 3 * 1025 |
Co(OH)42– | 5 * 109 | Zn(CN)42– | 2.1 * 1019 |
Co(SCN)42– | 1 * 103 | Zn(NH3)42+ | 2.8 * 109 |
Cr(OH)4– | 8.0 * 1029 | Zn(OH)42– | 2 * 1015 |
Cu(CN)42– | 1.0 * 1025 |