Question 10.5: Compute the Cholesky factorization for the symmetric matrix ...

Compute the Cholesky factorization for the symmetric matrix
[A] =\begin{bmatrix} 6 & 15 & 55 \\ 15 & 55 &225 \\ 55 & 225 & 979\end{bmatrix}

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

For the first row (i = 1), Eq. (10.15) is employed to compute

u_{ii} = \sqrt{a_{ii} − \sum\limits_{k=1}^{i−1}{u_{ki}^2}}                                                                            (10.15)
u_{11} = \sqrt{a_{11}} = \sqrt{6} = 2.44949
Then, Eq. (10.16) can be used to determine

u_{ij} = \frac {a_{ij} − \sum\limits_{k=1}^{i−1}{u_{ki}u_{kj}}}{u_{ii}}                            for j = i + 1, . . . , n             (10.16)
u_{12} =\frac{a_{12}}{u_{11}} = \frac{15}{2.44949} = 6.123724
u_{13} =\frac{a_{13}}{u_{11}} = \frac{55}{2.44949} = 22.45366
For the second row (i = 2):
u_{22} = \sqrt{a_{22} − u_{12}^2} = \sqrt{55 – (6.123724)^2} = 4.1833
u_{23} =\frac{{a_{23} −u_{12}u_{13}}}{u_{22}} = \frac{225 − 6.123724(22.45366)}{4.1833} = 20.9165
For the third row (i = 3):
u_{33} = \sqrt{a_{33} − u_{13}^2 − u_{23}^2} = \sqrt{979 − (22.45366)^2 − (20.9165)^2} = 6.110101
Thus, the Cholesky factorization yields
[U] =\begin{bmatrix} 2.44949 & 6.123724 & 22.45366 \\  & 4.1833 & 20.9165 \\  &  & 6.110101 \end{bmatrix}
The validity of this factorization can be verified by substituting it and its transpose into Eq. (10.14) to see if their product yields the original matrix [A]. This is left for an exercise.
[A] = [U]^T [U] \quad(10.14)

Related Answered Questions