Question 10.3: Compute the LU factorization and find the solution for the s...

Compute the LU factorization and find the solution for the same system analyzed in Example 9.4

\begin{bmatrix} 0.0003 &3.0000  \\ 1.0000 &  1.0000 \end{bmatrix} \begin{Bmatrix} x_{1} \\ x_{2}  \end{Bmatrix} = \begin{Bmatrix} 2.0001 \\ 1.0000  \end{Bmatrix}
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Before elimination, we set up the initial permutation matrix:
[P] = \begin{bmatrix} 1.0000 &0.0000 \\ 0.0000 &  1.0000 \end{bmatrix}
We immediately see that pivoting is necessary, so prior to elimination we switch the rows:
[A] =\begin{bmatrix} 1.0000 & 1.0000 \\ 0.0003 &  3.0000 \end{bmatrix}
At the same time, we keep track of the pivot by switching the rows of the permutation matrix:
[P] = \begin{bmatrix} 0.0000 & 1.0000 \\ 1.0000 &  0.0000 \end{bmatrix}

We then eliminate a_{21} by subtracting the factor l_{21} = a_{21}∕a_{11} = 0.0003∕1 = 0.0003 from the second row of A. In so doing, we compute that the new value of a_{2 2}^\prime = 3 − 0.0003(1) = 2.9997. Thus, the elimination step is complete with the result:
[U] = \begin{bmatrix} 1 & 1 \\ 0 &  2.9997 \end{bmatrix}              [L] = \begin{bmatrix} 1 & 0 \\ 0.0003 &  1 \end{bmatrix}
Before implementing forward substitution, the permutation matrix is used to reorder the right-hand-side vector to reflect the pivots as in
[P]{b} = \begin{bmatrix} 0.0000 & 1.0000 \\ 1.0000 &  0.0000 \end{bmatrix} \begin{Bmatrix} 2.0001 \\ 1.0000  \end{Bmatrix}= \begin{Bmatrix}  1\\2.0001 \end{Bmatrix}
Then, forward substitution is applied as in
\begin{bmatrix} 1 & 0  \\ 0.0003 &  1 \end{bmatrix} \begin{Bmatrix} d_{1} \\ d_{2}  \end{Bmatrix} = \begin{Bmatrix} 1 \\ 2.0001  \end{Bmatrix}
which can be solved for d_1 = 1 \text{ and }d_2 = 2.0001 − 0.0003(1) = 1.9998. At this point, the system is
\begin{bmatrix} 1 & 1  \\ 0 &  2.9997 \end{bmatrix} \begin{Bmatrix} x_{1} \\ x_{2}  \end{Bmatrix} = \begin{Bmatrix} 1 \\ 1.9998  \end{Bmatrix}
Applying back substitution gives the final result:
x_2 = \frac{1.9998}{2.9997} = 0.66667
x_1 =\frac{1 − 1(0.66667)}{1} = 0.33333

Related Answered Questions