Question 12.5: Compute the magnitude of the maximum tangential and radial s...
Compute the magnitude of the maximum tangential and radial stresses in a sphere carrying helium at a steady pressure of 69 MPa. The outside diameter is 200 mm and the inside diameter is 160 mm. Specify a suitable material for the cylinder.
Learn more on how we answer questions.
Objective Compute the maximum stresses and specify a material.
Given Pressure = p = 69 MPa; D_{o} = 200 mm; D_{i} = 160 mm
Analysis Use Procedure C from this section. These data are the same as those used in Example Problem 12–4. Some values will be carried forward.
Results Steps 1, 2, and 3. Sphere is thick walled.
Step 4. Use equations from Table 12–1. a = 80 mm; b = 100 mm
TABLE 12–1 Stresses in thick-walled cylinders and spheres .^{a} | ||
Stress at position r | Maximum stress | |
Thick-walled cylinder | ||
Hoop (tangential) | \sigma_{1} = \frac{pa^{2}(b^{2}+r^{2})}{r^{2}(b^{2}-a^{2})} | \sigma_{1} = \frac{p(b^{2}+a^{2})}{b^{2}-a^{2}} (at inner surface) |
Longitudinal | \sigma_{2} = \frac{pa^{2}}{b^{2}-a^{2}} | \sigma_{2} = \frac{pa^{2}}{b^{2}-a^{2}} (uniform throughout wall) |
Radial | \sigma_{3} = \frac{-pa^{2}(b^{2}-r^{2})}{r^{2}(b^{2}-a^{2})} | \sigma_{3} = -p (at inner surface) |
Thick-walled sphere | ||
Tangential | \sigma_{1} = \sigma_{2} = \frac{pa^{3}(b^{3} + 2r^{3})}{2r^{3}(b^{3}-a^{3})} | \sigma_{1} = \sigma_{2} = \frac{p(b^{3} + 2a^{3})}{2(b^{3}-a^{3})} (at inner surface) |
Radial | \sigma_{3} = \frac{-pa^{3}(b^{3}-r^{3})}{r^{3}(b^{3}-a^{2})} | \sigma_{3} = -p (at inner surface) |
The tangential stress is equal in all directions:
\sigma_{1} = \sigma_{2} = \frac{p(b^{3} + 2a^{3})}{2 (b^{3}-a^{3})} = \frac{(69 MPa)[100^{3}+2(80)^{3}]mm^{3}}{2(100^{3}-80^{3})mm^{3}}
\sigma_{1} = \sigma_{2} = 143.1 MPa tangential
The radial stress is compressive and equal to the applied internal pressure.
\sigma_{3} = =-p = -69 MPa
Each of these stresses is a maximum at the inner surface.
Steps 5 and 6. For a maximum stress of 143 MPa, the required yield strength for the mate-rial is
s_{y} = N( \sigma_{2}) = 4(143 MPa) = 572 MPa
Step 7. From Appendix A–10, we can specify SAE 4140 OQT 1300 steel that has a yield strength of 696 MPa. Others could be used.
A–10 Typical properties of carbon and alloy steels .^{a} | ||||||
Ultimate | Yield | |||||
strength, s_{u} | strength, s_{y} | |||||
Material SAE no. | Condition^{b} | ksi | Mpa | ksi | Mpa | Percent elongation |
1020 | Annealed | 57 | 393 | 43 | 296 | 36 |
1020 | Hot rolled | 65 | 448 | 48 | 331 | 36 |
1020 | Cold drawn | 75 | 517 | 64 | 441 | 20 |
1040 | Annealed | 75 | 517 | 51 | 352 | 30 |
1040 | Hot rolled | 90 | 621 | 60 | 414 | 25 |
1040 | Cold drawn | 97 | 669 | 82 | 565 | 16 |
1040 | WQT 700 | 127 | 876 | 93 | 641 | 19 |
1040 | WQT 900 | 118 | 814 | 90 | 621 | 22 |
1040 | WQT 1100 | 107 | 738 | 80 | 552 | 24 |
1040 | WQT 1300 | 87 | 600 | 63 | 434 | 32 |
1080 | Annealed | 89 | 614 | 54 | 372 | 25 |
1080 | OQT 700 | 189 | 1303 | 141 | 972 | 12 |
1080 | OQT 900 | 179 | 1234 | 129 | 889 | 13 |
1080 | OQT 1100 | 145 | 1000 | 103 | 710 | 17 |
1080 | OQT 1300 | 117 | 807 | 70 | 483 | 23 |
1141 | Annealed | 87 | 600 | 51 | 352 | 26 |
1141 | Cold drawn | 112 | 772 | 95 | 655 | 14 |
1141 | OQT 700 | 193 | 1331 | 172 | 1186 | 9 |
1141 | OQT 900 | 146 | 1007 | 129 | 889 | 15 |
1141 | OQT 1100 | 116 | 800 | 97 | 669 | 20 |
1141 | OQT 1300 | 94 | 648 | 68 | 469 | 28 |
4140 | Annealed | 95 | 655 | 60 | 414 | 26 |
4140 | OQT 700 | 231 | 1593 | 212 | 1462 | 12 |
4140 | OQT 900 | 187 | 1289 | 173 | 1193 | 15 |
4140 | OQT 1100 | 147 | 1014 | 131 | 903 | 18 |
4140 | OQT 1300 | 118 | 814 | 101 | 696 | 23 |
5160 | Annealed | 105 | 724 | 40 | 276 | 17 |
5160 | OQT 700 | 263 | 1813 | 238 | 1641 | 9 |
5160 | OQT 900 | 196 | 1351 | 179 | 1234 | 12 |
5160 | OQT 1100 | 149 | 1027 | 132 | 910 | 17 |
5160 | OQT 1300 | 115 | 793 | 103 | 710 | 23 |
Comment The maximum stress in the sphere is less than half that in the cylinder of the same size, allowing a material with a much lower strength to be used. Alternatively, it would be pos-sible to design the sphere with the same material but with a smaller wall thickness.