Question 8.2: Compute the third divided difference using the recursion rel...

Compute the third divided difference using the recursion relationship Eq. (8.2.28).

f[x_n, x_{n−1}, … , x_1, x_0] = \frac{f[x_n, x_{n−1}, … , x_2, x_1] − f[x_{n−1}, … , x_1, x_0]}{x_n − x_0}                     (8.2.28)

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The recursion relationship gives us

f[x_3, x_2, x_1, x_0] = \frac{f[x_3, x_2, x_1] − f[x_2, x_1, x_0]}{x_3 − x_0}                                     (8.2.33)

We then apply the recursion relationship to each term on the right-hand side,

f[x_3, x_2, x_1] = \frac{f[x_3, x_2] − f[x_2, x_1]}{x_3 − x_1}                                                         (8.2.34)

f[x_2, x_1, x_0] = \frac{f[x_2, x_1] − f[x_1, x_0]}{x_2 − x_0}                                                          (8.2.35)

Finally, we need to apply the recursion relationship again to the terms on the right-hand side to get the remaining three divided differences,

f[x_3, x_2] = \frac{f(x_3) − f(x_2)}{x_3 − x_2}                                               (8.2.36)

f[x_2, x_1] = \frac{f(x_2) − f(x_1)}{x_2 − x_1}                                          (8.2.37)

f[x_1, x_0] = \frac{f(x_1) − f(x_0)}{x_1 − x_0}                                        (8.2.38)

Having gotten to the end of the recursions, we now work our way upward to generate the desired result. We first substitute the first divided differences into the second divided differences,

f[x_3, x_2, x_1] = \frac{f(x_3) − f(x_2)}{(x_3 − x_2)(x_3 − x_1)}− \frac{f(x_2) − f(x_1)}{(x_2 − x_1)(x_3 − x_1)}                         (8.2.39)
f[x_2, x_1, x_0] =\frac{ f(x_2) − f(x_1)}{(x_2 − x_1)(x_2 − x_0)}− \frac{f(x_1) − f(x_0)}{(x_1 − x_0)(x_2 − x_0)}                      (8.2.40)

The latter results are then substituted into Eq. (8.2.33) to get the final result. In the general case, where the positions x_i are not specified, the end result can be a bit of a mess. Let’s hold off on any further algebra here until Example 8.6.

b_1 = f[x_1, x_0]              (8.2.23)

Related Answered Questions

Question: 8.5

Verified Answer:

With x_2 = x_0 + 2h and x_1 ...
Question: 8.6

Verified Answer:

We can begin by applying Eq. (8.2.52) to get conve...
Question: 8.4

Verified Answer:

With x_i = x_0 + h  and  x_j = x_0,...
Question: 8.1

Verified Answer:

Let x_i = x_2, x_j = x_1,  and  x_k = x_0[/...