Question 12.4: Consider a large isothermal enclosure that is maintained at ...

Consider a large isothermal enclosure that is maintained at a uniform temperature of 2000 K. Calculate the emissive power of the radiation that emerges from a small aperture on the enclosure surface. What is the wavelength λ1λ_{1} below which 10% of the emission is concentrated? What is the wavelength λ2λ_{2} above which 10% of the emission is concentrated? Determine the maximum spectral emissive power and the wavelength at which this emission occurs. What is the irradiation incident on a small object placed inside the enclosure?

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Known: Large isothermal enclosure at uniform temperature.

Find:
1. Emissive power of a small aperture on the enclosure.
2. Wavelengths below which and above which 10% of the radiation is concentrated.
3. Spectral emissive power and wavelength associated with maximum emission.
4. Irradiation on a small object inside the enclosure.

Schematic:

Assumptions: Areas of aperture and object are very small relative to enclosure surface.

Analysis:
1. Emission from the aperture of any isothermal enclosure will have the characteristics of blackbody radiation. Hence, from Equation 12.32,

Eb=σT4E_{b} = σT^{4}              (12.32)

E=Eb(T)=σT4=5.670×108 W/m2K4(2000 K)4E=9.07×105 W/m2E =E_{b}(T) = σT^{4} = 5.670 × 10^{-8}  W/m^{2} · K^{4}(2000  K)^{4}\\ E = 9.07 × 10^{5}  W/m^{2}

2. The wavelength λ1λ_{1} corresponds to the upper limit of the spectral band (0λ1)(0 → λ_{1}) containing 10% of the emitted radiation. With F(0λ1)=0.10F_{(0→λ_{1})} = 0.10 it follows from Table 12.2 that λ1T=2195 μmKλ_{1}T = 2195  μm · K. Hence

TABLE 12.2 Blackbody Radiation Functions
Iλ,b(λ,T)Iλ,b(λmax,T)\pmb{\frac{I_{λ, b}(λ, T)}{I_{λ,b}(λ_{\max}, T)}} Iλ,b(λ,T)/σT5(μmKsr)1\pmb{I_{λ, b}(λ, T)/σT^{5} (μm · K · sr)^{-1}} F(0λ)\pmb{F_{(0 → λ)}} λT (μm · K)
0.000000 0.375034×10270.375034 × 10^{-27} 0.000000 200
0.000000 0.490335×10130.490335 × 10^{-13} 0.000000 400
0.000014 0.104046×1080.104046 × 10^{-8} 0.000000 600
0.001372 0.991126×1070.991126 × 10^{-7} 0.000016 800
0.016406 0.118505×1050.118505 × 10^{-5} 0.000321 1,000
0.072534 0.523927×1050.523927 × 10^{-5} 0.002134 1,200
0.186082 0.134411×1040.134411 × 10^{-4} 0.007790 1,400
0.344904 0.249130 0.019718 1,600
0.519949 0.375568 0.039341 1,800
0.683123 0.493432 0.066728 2,000
0.816329 0.589649×1040.589649 × 10^{-4} 0.100888 2,200
0.912155 0.658866 0.140256 2,400
0.970891 0.701292 0.183120 2,600
0.997123 0.720239 0.227897 2,800
1.000000 0.722318×1040.722318 × 10^{-4} 0.250108 2,898
0.997143 0.720254×1040.720254 × 10^{-4} 0.273232 3,000
0.977373 0.705974 0.318102 3,200
0.943551 0.681544 0.361735 3,400
0.900429 0.650396 0.403607 3,600
0.851737 0.615225×1040.615225 × 10^{-4} 0.443382 3,800
0.800291 0.578064 0.480877 4,000
0.748139 0.540394 0.516014 4,200
0.696720 0.503253 0.548796 4,400
0.647004 0.467343 0.579280 4,600
0.599610 0.433109 0.607559 4,800
0.554898 0.400813 0.633747 5,000
0.513043 0.370580×1040.370580 × 10^{-4} 0.658970 5,200
0.474092 0.342445 0.680360 5,400
0.438002 0.316376 0.701046 5,600
0.404671 0.292301 0.720158 5,800
0.373965 0.270121 0.737818 6,000
0.345724 0.249723×1040.249723 × 10^{-4} 0.754140 6,200
0.319783 0.230985 0.769234 6,400
0.295973 0.213786 0.783199 6,600
0.274128 0.198008 0.796129 6,800
0.254090 0.183534 0.808109 7,000
0.235708 0.170256×1040.170256 × 10^{-4} 0.819217 7,200
0.218842 0.158073 0.829527 7,400
0.203360 0.146891 0.839102 7,600
0.189143 0.136621 0.848005 7,800
0.176079 0.127185 0.856288 8,000
0.147819 0.106772×1040.106772 × 10^{-4} 0.874608 8,500
0.124801 0.901463×1050.901463 × 10^{-5} 0.890029 9,000
0.105956 0.765338 0.903085 9,500
0.090442 0.653279×1050.653279 × 10^{-5} 0.914199 10,000
0.077600 0.560522 0.923710 10,500
0.066913 0.483321 0.931890 11,000
0.057970 0.418725 0.939959 11,500
0.050448 0.364394×1050.364394 × 10^{-5} 0.945098 12,000
0.038689 0.279457 0.955139 13,000
0.030131 0.217641 0.962898 14,000
0.023794 0.171866×1050.171866 × 10^{-5} 0.969981 15,000
0.019026 0.137429 0.973814 16,000
0.012574 0.908240×1060.908240 × 10^{-6} 0.980860 18,000
0.008629 0.623310 0.985602 20,000
0.003828 0.276474 0.992215 25,000
0.001945 0.140469×1060.140469 × 10^{-6} 0.995340 30,000
0.000656 0.473891×1070.473891 × 10^{-7} 0.997967 40,000
0.000279 0.201605 0.998953 50,000
0.000058 0.418597×1080.418597 × 10^{-8} 0.999713 75,000
0.000019 0.135752 0.999905 100,000

λ1=1.1 μmλ_{1} = 1.1  μm

The wavelength λ2λ_{2} corresponds to the lower limit of the spectral band (λ2)(λ_{2} → ∞) containing 10% of the emitted radiation. With

F(λ2)=1 – F(0λ2)=0.1F(0λ2)=0.9F_{(λ_{2}→∞)} = 1  –  F_{(0→λ_{2})} = 0.1\\ F_{(0→λ_{2})} = 0.9

it follows from Table 12.2 that λ2T=9382 μmKλ_{2}T = 9382  μm · K. Hence

λ2=4.69 μmλ_{2} = 4.69  μm

3. From Wien’s displacement law, Equation 12.31, λmaxT=2898 μmKλ_{\max}T = 2898  μm · K. Hence

λmaxT=C3λ_{\max}T = C_{3}              (12.31)

λmax=1.45 μmλ_{\max} = 1.45  μm

The spectral emissive power associated with this wavelength may be computed from Equation 12.30 or from the third column of Table 12.2. For λmaxT=2898 μmKλ_{\max}T = 2898  μm · K it follows from Table 12.2 that

Eλ,b(λ,T)=πIλ,b(λ,T)=C1λ5[exp(C2/λT) – 1]E_{λ,b}(λ, T) = \pi I_{λ,b}(λ, T) = \frac{C_{1}}{λ^{5}[\exp (C_{2}/λT)  –  1]}              (12.30)

Iλ,b(1.45 μm,T)=0.722×104σT5I_{λ,b}(1.45  μm, T) = 0.722 × 10^{-4} σT^{5}

Hence

Iλ,b(1.45 μm,2000 K)=0.722×104 (μmKsr)1×5.67×108 W/m2K4 (2000 K)5Iλ,b(1.45 μm,2000 K)=1.31×105 W/m2srμmI_{λ,b}(1.45  μm, 2000  K) = 0.722 × 10^{-4}  (μm · K · sr)^{-1} × 5.67 × 10^{-8}  W/m^{2} · K^{4}  (2000  K)^{5}\\ I_{λ,b}(1.45  μm, 2000  K) = 1.31 × 10^{5}  W/m^{2} · sr · μm

Since the emission is diffuse, it follows from Equation 12.16 that

Eλ(λ)=πIλ,e(λ)E_{λ}(λ) = \pi I_{λ,e}(λ)              (12.16)

Eλ,b=πIλ,b=4.12×105 W/m2μmE_{λ,b} = \pi I_{λ,b} = 4.12 × 10^{5}  W/m^{2} · μm

4. Irradiation of any small object inside the enclosure may be approximated as being equal to emission from a blackbody at the enclosure surface temperature. Hence G=Eb(T)G = E_{b}(T), in which case

G=9.07×105 W/m2G = 9.07 × 10^{5}  W/m^{2}

12.4

Related Answered Questions

Question: 12.2

Verified Answer:

Known: Spectral distribution of surface irradiatio...