Question 12.4: Consider a large isothermal enclosure that is maintained at ...
Consider a large isothermal enclosure that is maintained at a uniform temperature of 2000 K. Calculate the emissive power of the radiation that emerges from a small aperture on the enclosure surface. What is the wavelength λ1 below which 10% of the emission is concentrated? What is the wavelength λ2 above which 10% of the emission is concentrated? Determine the maximum spectral emissive power and the wavelength at which this emission occurs. What is the irradiation incident on a small object placed inside the enclosure?
Learn more on how we answer questions.
Known: Large isothermal enclosure at uniform temperature.
Find:
1. Emissive power of a small aperture on the enclosure.
2. Wavelengths below which and above which 10% of the radiation is concentrated.
3. Spectral emissive power and wavelength associated with maximum emission.
4. Irradiation on a small object inside the enclosure.
Schematic:
Assumptions: Areas of aperture and object are very small relative to enclosure surface.
Analysis:
1. Emission from the aperture of any isothermal enclosure will have the characteristics of blackbody radiation. Hence, from Equation 12.32,
Eb=σT4 (12.32)
E=Eb(T)=σT4=5.670×10−8 W/m2⋅K4(2000 K)4E=9.07×105 W/m2
2. The wavelength λ1 corresponds to the upper limit of the spectral band (0→λ1) containing 10% of the emitted radiation. With F(0→λ1)=0.10 it follows from Table 12.2 that λ1T=2195 μm⋅K. Hence
TABLE 12.2 Blackbody Radiation Functions | |||
Iλ,b(λmax,T)Iλ,b(λ,T)Iλ,b(λmax,T)Iλ,b(λ,T) | Iλ,b(λ,T)/σT5(μm⋅K⋅sr)−1Iλ,b(λ,T)/σT5(μm⋅K⋅sr)−1 | F(0→λ)F(0→λ) | λT (μm · K) |
0.000000 | 0.375034×10−27 | 0.000000 | 200 |
0.000000 | 0.490335×10−13 | 0.000000 | 400 |
0.000014 | 0.104046×10−8 | 0.000000 | 600 |
0.001372 | 0.991126×10−7 | 0.000016 | 800 |
0.016406 | 0.118505×10−5 | 0.000321 | 1,000 |
0.072534 | 0.523927×10−5 | 0.002134 | 1,200 |
0.186082 | 0.134411×10−4 | 0.007790 | 1,400 |
0.344904 | 0.249130 | 0.019718 | 1,600 |
0.519949 | 0.375568 | 0.039341 | 1,800 |
0.683123 | 0.493432 | 0.066728 | 2,000 |
0.816329 | 0.589649×10−4 | 0.100888 | 2,200 |
0.912155 | 0.658866 | 0.140256 | 2,400 |
0.970891 | 0.701292 | 0.183120 | 2,600 |
0.997123 | 0.720239 | 0.227897 | 2,800 |
1.000000 | 0.722318×10−4 | 0.250108 | 2,898 |
0.997143 | 0.720254×10−4 | 0.273232 | 3,000 |
0.977373 | 0.705974 | 0.318102 | 3,200 |
0.943551 | 0.681544 | 0.361735 | 3,400 |
0.900429 | 0.650396 | 0.403607 | 3,600 |
0.851737 | 0.615225×10−4 | 0.443382 | 3,800 |
0.800291 | 0.578064 | 0.480877 | 4,000 |
0.748139 | 0.540394 | 0.516014 | 4,200 |
0.696720 | 0.503253 | 0.548796 | 4,400 |
0.647004 | 0.467343 | 0.579280 | 4,600 |
0.599610 | 0.433109 | 0.607559 | 4,800 |
0.554898 | 0.400813 | 0.633747 | 5,000 |
0.513043 | 0.370580×10−4 | 0.658970 | 5,200 |
0.474092 | 0.342445 | 0.680360 | 5,400 |
0.438002 | 0.316376 | 0.701046 | 5,600 |
0.404671 | 0.292301 | 0.720158 | 5,800 |
0.373965 | 0.270121 | 0.737818 | 6,000 |
0.345724 | 0.249723×10−4 | 0.754140 | 6,200 |
0.319783 | 0.230985 | 0.769234 | 6,400 |
0.295973 | 0.213786 | 0.783199 | 6,600 |
0.274128 | 0.198008 | 0.796129 | 6,800 |
0.254090 | 0.183534 | 0.808109 | 7,000 |
0.235708 | 0.170256×10−4 | 0.819217 | 7,200 |
0.218842 | 0.158073 | 0.829527 | 7,400 |
0.203360 | 0.146891 | 0.839102 | 7,600 |
0.189143 | 0.136621 | 0.848005 | 7,800 |
0.176079 | 0.127185 | 0.856288 | 8,000 |
0.147819 | 0.106772×10−4 | 0.874608 | 8,500 |
0.124801 | 0.901463×10−5 | 0.890029 | 9,000 |
0.105956 | 0.765338 | 0.903085 | 9,500 |
0.090442 | 0.653279×10−5 | 0.914199 | 10,000 |
0.077600 | 0.560522 | 0.923710 | 10,500 |
0.066913 | 0.483321 | 0.931890 | 11,000 |
0.057970 | 0.418725 | 0.939959 | 11,500 |
0.050448 | 0.364394×10−5 | 0.945098 | 12,000 |
0.038689 | 0.279457 | 0.955139 | 13,000 |
0.030131 | 0.217641 | 0.962898 | 14,000 |
0.023794 | 0.171866×10−5 | 0.969981 | 15,000 |
0.019026 | 0.137429 | 0.973814 | 16,000 |
0.012574 | 0.908240×10−6 | 0.980860 | 18,000 |
0.008629 | 0.623310 | 0.985602 | 20,000 |
0.003828 | 0.276474 | 0.992215 | 25,000 |
0.001945 | 0.140469×10−6 | 0.995340 | 30,000 |
0.000656 | 0.473891×10−7 | 0.997967 | 40,000 |
0.000279 | 0.201605 | 0.998953 | 50,000 |
0.000058 | 0.418597×10−8 | 0.999713 | 75,000 |
0.000019 | 0.135752 | 0.999905 | 100,000 |
λ1=1.1 μm
The wavelength λ2 corresponds to the lower limit of the spectral band (λ2→∞) containing 10% of the emitted radiation. With
F(λ2→∞)=1 – F(0→λ2)=0.1F(0→λ2)=0.9
it follows from Table 12.2 that λ2T=9382 μm⋅K. Hence
λ2=4.69 μm
3. From Wien’s displacement law, Equation 12.31, λmaxT=2898 μm⋅K. Hence
λmaxT=C3 (12.31)
λmax=1.45 μm
The spectral emissive power associated with this wavelength may be computed from Equation 12.30 or from the third column of Table 12.2. For λmaxT=2898 μm⋅K it follows from Table 12.2 that
Eλ,b(λ,T)=πIλ,b(λ,T)=λ5[exp(C2/λT) – 1]C1 (12.30)
Iλ,b(1.45 μm,T)=0.722×10−4σT5
Hence
Iλ,b(1.45 μm,2000 K)=0.722×10−4 (μm⋅K⋅sr)−1×5.67×10−8 W/m2⋅K4 (2000 K)5Iλ,b(1.45 μm,2000 K)=1.31×105 W/m2⋅sr⋅μm
Since the emission is diffuse, it follows from Equation 12.16 that
Eλ(λ)=πIλ,e(λ) (12.16)
Eλ,b=πIλ,b=4.12×105 W/m2⋅μm
4. Irradiation of any small object inside the enclosure may be approximated as being equal to emission from a blackbody at the enclosure surface temperature. Hence G=Eb(T), in which case
G=9.07×105 W/m2
