Question 12.1: Consider a shallow foundation with the following: ● Foundati...

Consider a shallow foundation with the following:
● Foundation: B = 3 ft
L = 5 ft
D_f = 3 ft
● Soil: γ = 110 lb/ft³
φ′ = 25°
c′ = 400 lb/ft²
Determine the gross allowable load the foundation can carry. Use FS = 4.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Eq. (12.7), noting that F_{ci} = F_{qi} = F_{\gamma i} = 1
q_u = c^\prime N_cF_{cs}F_{cd} + qN_qF_{qs}F_{qd} +\frac{1}{2} \gamma BN_\gamma F_{\gamma s}F_{\gamma q}
For φ′ = 25°, from Table 12.1,

φ′ N_c N_q N_\gamma φ′ N_c N_q N_\gamma
0 5.14 1.00 0.00 23 18.05 8.66 8.20
1 5.38 1.09 0.07 24 19.32 9.60 9.44
2 5.63 1.20 0.15 25 20.72 10.66 10.88
3 5.90 1.31 0.24 26 22.25 11.85 12.54
4 6.19 1.43 0.34 27 23.94 13.20 14.47
5 6.49 1.57 0.45 28 25.80 14.72 16.72
6 6.81 1.72 0.57 29 27.86 16.44 19.34
7 7.16 1.88 0.71 30 30.14 18.40 22.40
8 7.53 2.06 0.86 31 32.67 20.63 25.99
9 7.92 2.25 1.03 32 35.49 23.18 30.22
10 8.35 2.47 1.22 33 38.64 26.09 35.19
11 8.80 2.71 1.44 34 42.16 29.44 41.06
12 9.28 2.97 1.69 35 46.12 33.30 48.03
13 9.81 3.26 1.97 36 50.59 37.75 56.31
14 10.37 3.59 2.29 37 55.63 42.92 66.19
15 10.98 3.94 2.65 38 61.35 48.93 78.03
16 11.63 4.34 3.06 39 67.87 55.96 92.25
17 12.34 4.77 3.53 40 75.31 64.20 109.41
18 13.10 5.26 4.07 41 83.86 73.90 130.22
19 13.93 5.80 4.68 42 93.71 85.38 155.55
20 14.83 6.40 5.39 43 105.11 99.02 186.54
21 15.82 7.07 6.20 44 118.37 115.31 224.64
22 16.88 7.82 7.13 45 133.88 134.88 271.76

N_c = 20.72
N_q = 10.66
N_\gamma = 10.88
q = \gamma D_f = (110)(3) = 330 lb/ft²
From Table 12.2,

Factor Relationship Source
Shape* F_{cs} = 1 +\frac{B}{L}\frac{ N_q}{ N_c} De Beer (1970)
F_{qs} = 1 +\frac{B}{L}\tan \phi^\prime
F_{\gamma s} = 1 – 0.4\frac{B}{L}
where L = length of the foundation (L > B)
Depth{}^† Condition (a): Df/B \leq  1 Hansen (1970)
F_{cd} = 1 + 0.4\frac{D_f}{B}
F_{qd}=1+2\tan\phi^\prime(1-\sin \phi^\prime)^2\frac{D_f}{B}
F_{\gamma d} = 1
Condition (b): D_f /B \gt   1
F_{cd} = 1 +( 0.4)\tan^{-1}\left(\frac{D_f}{B}\right)
F_{qd}=1+2\tan\phi^\prime(1-\sin \phi^\prime)^2\tan^{-1}\left(\frac{D_f}{B}\right)
F_{\gamma d} = 1
Inclination F_{ci}=F_{qi}=\left(1-\frac{\beta^\circ}{90^\circ}\right)^2 Meyerhof (1963); Hanna
and Meyerhof (1981)
F_{\gamma i}=\left(1-\frac{\beta}{\phi^\prime}\right)^2
where β = inclination of the load on the foundation with respect to the vertical

F_{cs} = 1 +\frac{B N_q}{L N_c}= 1 + \left(\frac{3}{5}\right)\left(\frac{10.66}{20.72}\right) = 1.309
F_{qs} = 1 +\frac{B}{L}\tan \phi^\prime=1+\left(\frac{3}{5}\right)\tan 25 = 1.28
F_{\gamma s} = 1 – 0.4\frac{B}{L}=1-(0.4)\left(\frac{3}{5}\right)= 0.76
F_{cd} = 1 + 0.4\frac{D_f}{B}= 1 + (0.4)\left(\frac{3}{3}\right)= 1.4
F_{qd}=1+2\tan\phi^\prime(1-\sin \phi^\prime)^2\frac{D_f}{B}=1+2\tan 25(1-\sin 25)^2\left(\frac{3}{3}\right) = 1.311
F_{\gamma d} = 1
q_u = (400)(20.72)(1.309)(1.4) + (330)(10.66)(1.28)(1.311) +\frac{1}{2}(110)(3)(10.88)(0.76)(1)
= 15,188.6 + 5903.1 + 1364.4 = 22,456.1 lb/ft²
q_{all}  =\frac{q_u}{FS} = \frac{22,456.1}{4} ≈ 5614 lb
Q_{all} = (q_{all})(BL) = (5614)(3\times 5) = 84,210 lb≈ 84.2 kip

Related Answered Questions