Question 8.1: Consider a string of density σ that is stretched between two...

Consider a string of density σ that is stretched between two points and is excited with small amplitudes.
(a) Calculate in general the kinetic and potential energy of the string.
(b) Calculate the kinetic and potential energy for waves of the form

y = C   cos \left(\frac{ω(x −ct)}{c}\right)

with T_{0} = 500  N, C = 0.01  m,  and   λ = 0.1  m.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) The part \overline{PQ} of the string has the mass σΔx and the velocity ∂y/∂t .
Its kinetic energy is then

ΔT = \frac{1}{2} σ Δx \left(\frac{∂y}{∂t}\right)^{2}.                                   (8.24)

The total kinetic energy of the string between x = a and b is

T = \frac{1}{2} σ  \int\limits_{a}^{b}{ \left(\frac{∂y}{∂t}\right)^{2} dx}.                                     (8.25)

The work which is needed to elongate the string from Δx   to   Δl is

dP = T_{0}(Δl −Δx),                        \frac{Δl}{Δx}∼ 1.                                  (8.26)

For small displacements, we have

Δl = (Δx^{2} + Δy^{2})^{1/2} = Δx \left[1+ \left(\frac{∂y}{∂x}\right)^{2} \right]^{1/2} \simeq Δx \left[1+ \frac{1}{2}  \left(\frac{∂y}{∂x}\right)^{2}\right].                            (8.27)

The potential energy for the region x = a   to   x = b is then

P = \frac{1}{2} T_{0} \int\limits_{a}^{b}{\left(\frac{∂y}{∂x}\right)^{2} dx}.                             (8.28)

For a wave y = F(x − ct) propagating in a direction, we have

T = P = \frac{1}{2} T_{0} \int\limits_{a}^{b}{[F^{′}(x −ct)]^{2}  dx},                      c_{2} = \frac{T_{0}}{σ}.                                         (8.29)

Hence, the kinetic and potential energy are equal. If a, b are fixed points, then T and P vary with time. But if we admit that a and b can propagate with the sound velocity c, so that

a = A +ct       and         b = B +ct,                                (8.30)

then P and T are constant:

T = P = \frac{1}{2} T_{0} \int\limits_{A}^{B}{(F^{′}(x))^{2}  dx}.                                     (8.31)

(b)

\frac{∂y}{∂t} = C  sin \left(\frac{ω}{c} x −ωt\right)ω

⇒ \left(\frac{∂y}{∂t}\right)^{2} = C^{2}  sin^{2} \left(\frac{ω}{c} x −ωt\right) ω^{2}.                             (8.32)

Insertion into (8.25) yields (a = 0, b = λ)

T = \frac{1}{2} \frac{T_{0}}{c^{2}}  C^{2} ω^{2} \int\limits_{0}^{λ}{sin^{2} \left(\frac{ω}{c} x −ωt\right) dx} =\frac{1}{2} \frac{T_{0}}{c^{2}} C^{2}ω^{2} · I.                         (8.33)

With the substitution z = (ω/c)x −ωt for the integral I , we find

I = \frac{c}{ω} \int\limits_{−ωt}^{(ω/c)λ−ωt}{sin^{2}   zdz} = \frac{c}{ω} \int\limits_{0}^{(ω/c)λ}{sin^{2}  zdz} = \frac{c}{ω} \int\limits_{0}^{2π}{sin^{2}  zdz}                        (8.34)

= \frac{c}{ω} \left[ \frac{1}{2} z − \frac{1}{4}  sin(2z)\right]^{2π}_{0}= \frac{c}{ω} π

⇒ T = \frac{1}{2} \frac{T_{0}}{c^{2}}  C^{2}ω^{2}  \frac{c}{ω} π = \frac{π^{2}C^{2}T_{0}}{λ},                    λ= 2π \frac{c}{ω}.                                    (8.35)

One gets the same expression for the potential energy. Insertion of the numerical values yields

T = P = (0.01)^{2} · π^{2} \frac{500  N}{0.1  m} m^{2} ∼5  Nm.
8.4

Related Answered Questions