Question 6.2: Consider the carbon/epoxy simply supported beam discussed in...

Consider the carbon/epoxy simply supported beam discussed in Example 6.1. For ready reference, we repeat the details here.
Dimensions: l = 500 mm, b = 20 mm, and h = 6 mm
Ply sequence: [0°/90°/0°], each ply being 2 mm in thickness

Determine the maximum displacement and longitudinal in-plane stress \sigma_{xx} at the center of the beam. The beam is under a central point load of 100 N applied parallel to the plies. The point load is applied over an area of 6 mm × 20 mm.

Material properties are as follows:

E_1=125 \ GPa,E_2=10 \ GPa,\nu _{12}=0.25,and \ G_{12}=8 \ GPa
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

For the given material properties and ply sequence, the transformed reduced stiffness matrix and the laminate compliance matrices are as follows:

[\bar{Q} ]^{(1)}=[\bar{Q} ]^{(3)}=\begin{bmatrix} 125.6281&2.5126&0\\2.5126&10.0503&0\\0&0&8 \end{bmatrix} \times 10^3 \ MPa \\ [\bar{Q} ]^{(2)}=\begin{bmatrix} 10.0503&2.5126&0\\2.5126&125.6281&0\\0&0&8 \end{bmatrix} \times 10^3 \ MPa \\ [A^\ast ]=\begin{bmatrix} 1.9163&-0.0991&0\\-0.0991&3.4362&0\\0&0&20.8333 \end{bmatrix} \times 10^{-6}(MPa.mm)^{-1} \\ [D^\ast ]=\begin{bmatrix} 0.4595&-0.0806&0\\-0.0806&3.8907&0\\0&0&6.9444 \end{bmatrix} \times 10^{-6}(MPa.mm^3)^{-1} \\ [B^\ast ]=[C^\ast ]=0

Effective extensional stiffness of the beam is given by Equation 6.142 as follows:

E_{xx}^{ex}I_{zz}=\frac{b^3}{12A_{11}^\ast }=\frac{20^3}{12\times 1.9163\times 10^{-6}}=347.8926\times 10^6 \ N.mm^2

z-coordinates of different plies are as follows:

z_0=-3 \ mm,z_1=-1 \ mm,z_2=1 \ mm, \ and \ z_3=3 \ mm

Displacement under the point load is the maximum displacement, and it is obtained by using effective extensional stiffness in Equation 6.73 as

(w_0)_{max}=-\frac{Pl^3} {48E_{xx}^bI_{yy}}\quad\quad\quad\quad\quad (6.73) \\ (w_0)_{max}=-\frac{100\times 500^3}{48\times 347.8926\times 10^6} =-0.75 \ mm

Maximum bending moment is M = 12,500 N mm

Maximum effective bending stress occurs at the bottom and top of the beam at the center. They are given by Equation 6.150:
At the bottom of the beam under the central point load,

\sigma _{xx}^{eff}=\frac{yM}{I_{zz}} \quad\quad\quad\quad\quad (6.150) \\ \left(\sigma _{xx}^{eff}\right) _{max}=\frac{10\times 12500}{6\times 20^3/12}=31.25    MPa

which implies N_{xx} = 31.25 \times 6 = 187.5    N/mm. \ N_{xx} is positive (tensile) at the bottom of the beam and negative (compressive) at the top.

To determine the in-plane stresses in the plies at the outermost face of the beam, we proceed as follows. The midplane strains and curvatures are given by

\begin{Bmatrix} \varepsilon _{xx}^0\\\varepsilon _{yy}^0\\\gamma _{xy}^0 \end{Bmatrix} =\begin{bmatrix} 1.9163&-0.0991&0\\-0.0991&3.4362&0\\0&0&20.8333 \end{bmatrix} \times \begin{Bmatrix} 187.5\\0\\0 \end{Bmatrix} \times 10^{-6}=\begin{Bmatrix} 3.593\\-0.186\\0 \end{Bmatrix} \times 10^{-4} \\ \begin{Bmatrix} \kappa _{xx} \\ \kappa _{yy} \\\kappa _{xy} \end{Bmatrix} =\begin{Bmatrix} 0\\0\\0 \end{Bmatrix}

Then, the global strains

\begin{Bmatrix} \varepsilon _{xx}\\\varepsilon_{yy}\\ \varepsilon _{xy}\end{Bmatrix} =\begin{Bmatrix} 3.593\\-0.186\\0 \end{Bmatrix} \times 10^{-4}

Note that the strains are the same in all the plies. Global stresses in the outermost plies (0^\circ ) are obtained as

\begin{Bmatrix} \sigma _{xx}\\\sigma _{yy}\\\tau_{xy} \end{Bmatrix} ^{(1)}=\begin{bmatrix} 125.6281&2.5126&0\\2.5126&10.0503&0\\0&0&8 \end{bmatrix} \times \begin{Bmatrix} 3.593\\-0.186\\0 \end{Bmatrix} \times 10^{-1}=\begin{Bmatrix} 45.1\\0.7\\0\end{Bmatrix}   MPa

The local stresses are obtained by transformation as follows:

\begin{Bmatrix} \sigma _{11}\\\sigma _{22}\\ \tau_{12} \end{Bmatrix} ^{(1)}=\begin{bmatrix} 1&0&0\\0&1&0\\0&0&1 \end{bmatrix} \begin{Bmatrix} 45.1\\0.7\\0 \end{Bmatrix} =\begin{Bmatrix} 45.1\\0.7\\0 \end{Bmatrix}  MPa

Similarly, the global and local stresses in the middle ply (90^\circ ) are obtained as

\begin{Bmatrix} \sigma _{xx}\\\sigma _{yy}\\ \tau_{xy} \end{Bmatrix} ^{(2)}=\begin{bmatrix} 10.0503&2.5126&0\\2.5126&125.6281&0\\0&0&8 \end{bmatrix} \times \begin{Bmatrix} 3.593\\-0.186\\0 \end{Bmatrix} \times 10^{-1}=\begin{Bmatrix} 3.6\\-1.4\\0 \end{Bmatrix} MPa

\begin{Bmatrix} \sigma _{11}\\\sigma _{22}\\ \tau_{12} \end{Bmatrix}^{(2)} =\begin{bmatrix} 0&1&0\\1&0&0\\0&0&-1 \end{bmatrix} \begin{Bmatrix} 3.6\\-1.4\\0 \end{Bmatrix} =\begin{Bmatrix} -1.4\\3.6\\0 \end{Bmatrix} MPav

Related Answered Questions