Question 18.6: Consider the following sequential reaction scheme:A→I→P Assu...

Consider the following sequential reaction scheme:

A\overset{k_{A}}{\rightarrow }  I\overset{k_{I}}{\rightarrow } P

Assuming that only reactant A is present at t=0, what is the expected time dependence of \left[ P \right] using the steady-state approximation?

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The differential rate expressions for this reaction were provided in Equations (18.47), (18.48), and (18.49):

\frac{d\left[ A \right]}{dt}=-k_{A}\left[ A \right]        (18.47)

\frac{d\left[ I \right]}{dt}=k_{A}\left[ A \right]-k_{I}\left[ I \right]             (18.48)

\frac{d\left[ P \right]}{dt}=k_{I}\left[ I \right]        (18.49)

Applying the steady-state approximation to the differential rate expression for I and substituting in the integrated expression for \left[ A \right] of Equation (18.51) yield

\left[ A \right]=\left[ A \right]_{0}e^{-k_{A}t}          (18.51)

 

\frac{d\left[ I \right]}{dt}=0=k_{A}\left[ A \right] -k_{I}\left[ I \right]

 

\frac{k_{A}}{k_{I}}\left[ A \right]=\frac{k_{A}}{k_{I}}\left[ A \right]_{0}e^{-k_{A}t}=\left[ I \right]

Substituting the preceding expression for \left[ I \right] into the differential rate expression for the product and integrating yield

\frac{d\left[ P \right]}{dt}=k_{I}\left[ I \right]=\frac{K_{A}}{k_{I}}\left( k_{I}\left[ A \right]_{0} e^{-k_{A}t}\right)

 

\int_{0}^{\left[ P \right]}d\left[ P \right]=k_{A}\left[ A \right]_{0}\int_{0}^{t}e^{-k_{A}t}dt

 

\left[ P \right]=k_{A}\left[ A \right]_{0}\left[ \frac{1}{k_{A}}\left( 1-e^{-k_{A}t} \right) \right]

 

\left[ P \right]=\left[ A \right]_{0}\left( 1-e^{-k_{A}t} \right)

This expression for \left[ P \right] is identical to that derived when the decay of A is treated as the rate-limiting step in the sequential reaction [Equation (18.59)].

\underset{k_{I}\gg k_{A}}{\lim} \left[ P \right]=\underset{k_{I}\gg k_{A}}{\lim}\left( \left( \frac{k_{A}e^{-k_{I}t}-k_{I}e^{k_{A}t}}{k_{I}-k_{A}} +1\right)\left[ A \right]_{0} \right)=\left( 1-e^{-k_{A}t} \right)\left[ A \right]_{0}           (18.59)

 

Related Answered Questions

Question: 18.5

Verified Answer:

This is the first example illustrated in Figure 18...