Question 9.10: Consider the single-engine piston-prop acrobatic aircraft Ge...

Consider the single-engine piston-prop acrobatic aircraft General Avia F 22 Pinguino with the following features:

m_{TO} = 900 kg,   S = 10.82 m²,   P = 130 kW,   b = 8.5,   V_s = 54 knot (with flap)

Assume: C_{Do} = 0.021,   η_P = 0.8,   e = 0.87.
Evaluate the fastest turn performance of this acrobatic aircraft at sea level.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We first need to find three parameters: K, AR, and C_{L\max}:

AR=\frac{b^2}{S}=\frac{8.5^2}{10.82}=5.92 \quad \quad \quad \quad (3.9) \\ \space \\ K=\frac{1}{\pi eAR}=\frac{1}{3.14\times 0.87\times 5.92}=0.06 \quad \quad \quad \quad (3.8) \\ \space \\ C_{L_{\max}}=\frac{2mg}{\rho SV_s^2}=\frac{2\times 900\times 9.81}{1.225\times 10.82\times (54\times 0.514)^2}=1.73 \quad \quad \quad \quad (2.49)

We need to compare the corner speed and the airspeed corresponding to the fastest turn:

V_{ft}=\frac{4KW^2}{P\eta_P\rho S}=\frac{4\times 0.06\times (900\times 9.81)^2}{130,000\times 0.8\times 1.225\times 10.81}=13.5\space m/s=26.3\space knot \quad \quad \quad \quad (9.126) \\ \space \\ V^{\ast}=\Big[\frac{2P_{\max}\eta_P}{\rho S(C_{D_o}+KC_{L_{\max}}^2)}\Big]^{\frac{1}{3}}=\Big[\frac{2\times 130,000\times 0.8}{1.225\times 10.82\times (0.021+0.06\times (1.73)^2)}\Big]^{\frac{1}{3}} \quad \quad \quad \quad (9.90) \\ \space \\ \Rightarrow V^{\ast}=42.9\space m/s=83.3\space knot

Since V_{ft} < V^{\ast}, the theoretical value for the fastest is not practical. From Equation 9.127, we consider V_{ft} = V^{\ast}= 42.9  m/s = 83.3  knot . According to Table 9.6, the equations in the last column are used.
• Load factor

n_{ft}=n_{\max_{C}}=\frac{\rho(V^{\ast})^2SC_{L_{\max}}}{2W}=\frac{1.225\times (42.9)^2\times 10.82\times 1.73}{2\times 900\times 9.81}=2.38 \quad \quad \quad \quad (9.130)

• Bank angle corresponding to the fastest turn

\phi_{ft}=\cos^{-1}\Big(\frac{1}{n_{ft}}\Big)=\cos^{-1}\Big(\frac{1}{2.38}\Big)=65.2^{\circ}\quad \quad \quad \quad (9.131)

• The maximum turn rate

\omega_{ft}=\frac{g\sqrt{n_{ft}^2-1}}{V_{ft}}=\frac{9.81\times \sqrt{2.38^2-1}}{42.9}=0.495 \space m/s=28.3 \space deg/s \quad \quad \quad \quad (9.133)

• Turn radius

R_{ft}=\frac{V_{ft}^2}{g\sqrt{n_{ft}^2-1}}=\frac{42.9^2}{9.81\times \sqrt{2.38^2-1}}=86.7\space m \quad \quad \quad \quad (9.135)

• Time required to cover a half circle

t=\frac{\pi R}{V}=\frac{3.14\times 86.7}{42.9}=6.3\space s\quad \quad \quad \quad (9.27)


(3.9):       AR=\frac{b}{C}=\frac{bb}{Cb}=\frac{b^2}{S}

(2.49):     V_s=\sqrt{\frac{2W}{\rho SC_{L_{\max}}}}

(9.127):    V_{ft}=V^{\ast}=\Big[\frac{2P_{\max}\eta_P}{\rho S(C_{D_o}+KC_{L_{\max}}^2)}\Big]^{\frac{1}{3}}

(9.27):       t_{circle}=\frac{2\pi R}{V}

 

Table 9.6 Summary of equations for the fastest turn parameters

No. Fastest turn parameter Symbol If V_{ft}\geq V^{\ast} If V_{ft}\prec  V^{\ast}
1. Airspeed corresponding to maximum turn rate V_{ft} 9.122 9.123
2. Load factor corresponding to maximum turn rate n_{ft} 9.125 9.126
3. Maximum turn rate \omega_{ft} 9.130 9.129
4. Turn rate corresponding to maximum turn rate R_{ft} 9.131 9.131
5. Bank angle corresponding to maximum turn rate \phi_{ft} 9.128 9.127

Related Answered Questions