Question 14.7: Construct an ADR spectrum for ductility ratio of 1, 2, 3, 4,...

Construct an ADR spectrum for ductility ratio of 1, 2, 3, 4, 5 and 6 for a ground motion having peak ground acceleration, peak ground velocity and peak ground displacement as 1g, 90 cm/sec and 60 cm, respectively. For elastic response spectrum, make use of Newmark–Hall amplification factors for 5% damping and 84.1 percentile. For constant ductility spectra, make use of reduction factors as specified in the Appendix B, Eurocode 8-Part 1.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Plot the elastic spectral acceleration-spectral displacement curve for 5% damping using Equation (14.26) along with radial lines for T = 0.5, 1, 1.5 and 2 sec as in previous examples. The reduction factors for spectral accelerations specified in Eurocode 8 are as follows:

R = (µ − 1)T/T_{C} + 1     for      T < T_{C}    (14.33a)

R = µ      for     T >T_{C}      (14.33a)

S_{di}=\frac{T_{I}^{2}}{4\pi ^{2}} S_{ai}g          (14.26)

The spectral displacements are obtained using Equation (14.32). Typical calculations for generating inelastic ADRS are shown in Table 14.11. The double lines in the table show change in reduction factor R region. Similar calculations can be done for other ductility ratios.
The constant ductility ADRS is shown in Figure 14.25.

S_{\text{d inelastic}} =µ S_{\text{d inelastic}}/R    for    T < T_{C}     (14.32a)

S_{\text{d inelastic}} =S_{\text{d inelastic}}      for    T > T_{C}        (14.32b)

Table 14.11 Calculations for r, S_{a} and S_{d} coordinates

µ = 1 (1 g) µ = 2 µ = 3
S_{a}/g T S_{d}(m) R S_{a}/g S_{d}(m) R S_{a}/g S_{d}(m)
1 0.01 0.0000 1.0200 0.9804 0.0000 1.0400 0.9615 0.0001
1 0.03 0.0002 1.0600 0.9434 0.0004 1.1200 0.8929 0.0006
2.71 0.125 0.0105 1.2500 2.1680 0.0169 1.5000 1.8067 0.0211
2.71 0.2 0.0270 1.4000 1.9357 0.0385 1.8000 1.5056 0.0449
2.71 0.3 0.0607 1.6000 1.6938 0.0758 2.2000 1.2318 0.0827
2.71 0.4 0.1079 1.8000 1.5056 0.1198 2.6000 1.0423 0.1244
2.71 0.5 0.1685 2.0000 1.3550 0.1685 3.000 0.9033 0.1685
2.33 0.6 0.2086 2.0000 1.1650 0.2086 3.0000 0.7767 0.2086
1.83 0.8 0.2913 2.0000 0.9150 0.2913 3.0000 0.6100 0.2913
1.5 1 0.3731 2.0000 0.7500 0.3731 3.0000 0.5000 0.3731
1 1.5 0.5597 2.0000 0.5000 0.5597 3.0000 0.3333 0.5597
0.93 1.6 0.5922 2.0000 0.4650 0.5922 3.0000 0.3100 0.5922
0.81 1.8 0.6528 2.0000 0.4050 0.6528 3.0000 0.2700 0.6528
0.71 2 0.7064 2.0000 0.3550 0.7064 3.0000 0.2367 0.7064
0.55 2.5 0.8551 2.0000 0.2750 0.8551 3.0000 0.1833 0.8551
0.45 3 1.0074 2.0000 0.2250 1.0074 3.0000 0.1500 1.0074
Annotation 2022-10-20 190836

Related Answered Questions

Question: 14.8

Verified Answer:

For T = 0.3 sec, stiffness = 43820 N/m This is a s...
Question: 14.9

Verified Answer:

For T = 1 sec, stiffness = 3944 N/m It is a medium...
Question: 14.3

Verified Answer:

The response spectra of IS:1893-Part 1 was present...
Question: 14.2

Verified Answer:

Axial load in column = 1000 kN (assumed); axial lo...
Question: 14.1

Verified Answer:

Section properties: breadth = 300 mm, depth = 500 ...