Question 13.6: Construct the matrix α · p + mβ that occurs in the above equ...

Construct the matrix α · p + mβ that occurs in the above equation.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

In the Dirac-Pauli representation of the α and β matrices (13.42), the matrix α^{i} is

\begin{matrix} α^{i}=\left[\begin{matrix} 0 &σ^{i}\\ σ^{i}& 0 \end{matrix} \right], & β =\left[\begin{matrix} I & 0 \\0 & I \end{matrix} \right] .\end{matrix}               (13.42)

\alpha ^{i}=\left[\begin{matrix}0& σ^{i}\\σ^{i}& 0 \end{matrix} \right] ,                                           (13.57)

where σ^{i} is a two-dimensional Pauli matrix defined by Eq. (13.43). Multiplying the above α-matrix with p^{i} gives

\begin{matrix} σ^{1}=\left[\begin{matrix}0 &1\\1& 0 \end{matrix} \right],& σ^{2}= \left[\begin{matrix}0 &-i\\i& 0\end{matrix} \right], &σ^{3}= \left[\begin{matrix}1 &0\\0& −1 \end{matrix} \right].\end{matrix}              (13.43)

\alpha ^{i}p^{i} =\left[\begin{matrix}0& σ^{i}p^{i}\\σ^{i}p^{i}& 0 \end{matrix} \right].

The dot product is accomplished by summing over the i indices to obtain

\alpha · p =\left[\begin{matrix}0& σ·p\\σ·p& 0 \end{matrix} \right].                             (13.58)

Similarly, the β matrix is

β =\left[\begin{matrix}I &0\\0& −I \end{matrix} \right],

where I denotes the unit 2 × 2 matrix. Multiplying β by m gives

mβ =\left[\begin{matrix}mI &0\\0& −mI \end{matrix} \right].

The 2 × 2 unit matrices I that occur in this last equation can be understood writing simply

mβ =\left[\begin{matrix}m &0\\0& −m \end{matrix} \right].                                              (13.59)

Combining Eqs. (13.58) and (13.59), we obtain

α · p + mβ =\left[\begin{matrix}m& σ · p\\σ · p& −m \end{matrix} \right].                                   (13.60)

Related Answered Questions