Question 14.1: Constructing the S-N Diagram for a Spring-Wire Material Prob...

Constructing the S-N Diagram for a Spring-Wire Material

Problem    Create the torsional-shear S-N diagrams for a range of spring-wire sizes.

Given    ASTM A228 music wire, unpeened.

Assumptions    Three diameters will be used: 0.010 in (0.25 mm), 0.042 in (1.1 mm), and 0.250 in (6.5 mm).

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

See Figure 14-15.

1    The tensile strength of each wire size is found from equation 14.3 in combination with the coefficient and exponent from Table 14-4 for this material.

S_{u t} \cong A d^b        (14.3)

\begin{aligned} S_{u t} & \cong 184649 d^{-0.1625} \\ &=184649(0.010)^{-0.1625}=390239  psi \\ &=184649(0.042)^{-0.1625}=309071  psi \\ &=184649(0.250)^{-0.1625}=231301  psi \end{aligned}       (a)

2    These values are converted to shear strengths at 1 000 cycles using equation 14.14:

S_{m s} \cong 0.9 S_{u s} \cong 0.9\left(0.67 S_{u t}\right) \cong 0.6 S_{u t}      (14.14)

\begin{array}{ll} & S_{m s} \cong 0.6 S_{u t} \\ d=0.010: & S_{m s} \cong 0.6(390239)=234143  psi \\ d=0.042: & S_{m s} \cong 0.6(309071)=185443  psi \\ d=0.250: & S_{m s} \cong 0.6(231301)=138781  psi \end{array}      (b)

3    The torsional fatigue strengths S_{fw} at three values of N are provided as percentages of the tensile strength in Table 14-9 for unpeened A228 music wire.

\begin{array}{l} d=0.010  @  N=1 E 5: S_{f w} \cong 0.36(390239)=140486  psi \\ d=0.010  @  N=1 E 6: S_{f w} \cong 0.33(390239)=128779  psi \\ d=0.010  @  N=1 E 7: S_{f w} \cong 0.30(390239)=117072  psi \end{array}       (c)

These values are plotted in combination with the result from equation 14.14 to generate the S-N curves.

4    Figure 14-15 shows the S-N curves. There are two separate portions to each S-N curve: the 1E3 ≤ N < 1E5 segment and the segment for N ≥ 1E5. The unpeened wire endurance limit for infinite life S_{ew} is also shown at 45 000 psi (equation 14.13).

\begin{array}{l} S_{e w^{\prime}} \cong 45.0  kpsi (310  MPa ) \quad \text {for unpeened springs} \\ S_{e w} \cong 67.5  kpsi (465  MPa ) \quad \text {for peened springs} \end{array}        (14.13)

5    If desired, any of these S-N curves can be fitted to an exponential equation (equations 6.10 on p. 338) by the method shown in Section 6-6. Evaluating the coefficients and exponents separately for the two pieces of the S-N curve allows the estimated wire fatigue strength S_{fw} to be easily found for any number of cycles.

S(N)=a N^b      (6.10a)

\log S(N)=\log a+b \log N       (6.10b)

\begin{aligned} b &=\frac{1}{z} \log \left\lgroup \frac{S_m}{S_e} \right\rgroup \quad \text { where } \quad z=\log N_1-\log N_2 \\ \log (a) &=\log \left(S_m\right)-b \log \left(N_1\right)=\log \left(S_m\right)-3 b \end{aligned}       (6.10c)

\begin{array}{c} z_{@ 5 E 8}=\log (1000)-\log (5 E 8)=3-8.699=-5.699 \\ b_{@ 5 E 8}=-\frac{1}{5.699} \log \left\lgroup  \frac{S_m}{S_f}\right\rgroup \quad \text { for } S_f @ N_2=5 E 8  \text { cycles } \end{array}        (6.10d)

6    It is important to remember that the S_{fw} data in Table 14-9 are for a repeated-stress state, not a fully reversed stress condition, which means that this S-N diagram is taken at some point along the \sigma _{m} axis in Figure 6-43 (p. 362).

Table 14-4 Coefficients and Exponents for Equation 14.3
Source: Reference 1
ASTM# Material Range Exponent
b
Coefficient A Correlation Factor
mm in MPa psi
A227 Cold drawn 0.5–16 0.020–0.625 –0.182 2 1 753.3 141 040 0.998
A228 Music wire 0.3–6 0.010–0.250 –0.1625 2 153.5 184 649 0.9997
A229 Oil tempered 0.5–16 0.020–0.625 –0.183 3 1 831.2 146 780 0.999
A232 Chrome-v 0.5–12 0.020–0.500 –0.145 3 1 909.9 173 128 0.998
A401 Chrome-s. 0.8–11 0.031–0.437 –0.093 4 2 059.2 220 779 0.991
Table 14-9 Maximum Torsional Fatigue Strength S_{fw}‘ for Round-Wire Helical
Compression Springs in Cyclic Applications (Stress Ratio, R = 0)
No Surging, Room Temperature, and Noncorrosive Environment. Source: Ref. 1
Percent of Ultimate Tensile Strength
Fatigue Life
(cycles)
ASTM 228, Austenitic Stainless
Steel and Nonferrous
ASTM A230 and A232
Unpeened Peened Unpeened Peened
10^5 36% 42% 42% 49%
10^6 33 39 40 47
10^7 30 36 38 46
14-15
6-43

Related Answered Questions