Question 10.22: Controllability and Observability Consider a dynamic system ...

Controllability and Observability

Consider a dynamic system given by G(s) = 2/(s + 4), which can be written in the statespace form

\dot{x}_1=-4x_1+2u

y=x_1

a. A new state is added and the resulting state-space equation is

\dot{x}_1 = -4x_1 +2u

\dot{x}_2=-x_2

y=x_1 +3x_2

Determine the transfer function for this new model.

b. Determine the transfer function for another model with state-space form

\dot{x}_1 =-4x_1+2u

\dot{x}_2 =-x_2 +u

y =x_1

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

a. The system matrices \mathbf{A, B, C}, and D are

\mathbf{A} = \begin{bmatrix} -4 & 0 \\ 0 & -1 \end{bmatrix},      \mathbf{B} = \begin{bmatrix} 2 \\ 0 \end{bmatrix},    \mathbf{C} = \begin{bmatrix} 1 & 3 \end{bmatrix},     D=0

The transfer function is

G(s) = \begin{bmatrix} 1  & 3 \end{bmatrix} \begin{bmatrix} s+4 & 0 \\ 0 & s+1 \end{bmatrix}^{-1}\begin{bmatrix} 2  \\ 0 \end{bmatrix} + 0 =  \frac{\begin{bmatrix} 1  & 3 \end{bmatrix}\begin{bmatrix} s+1 & 0 \\ 0 & s+4 \end{bmatrix}\begin{bmatrix} 2  \\ 0 \end{bmatrix}}{(s+1)(s+4)} = \frac{2}{s+4}

b. Similarly, we have

\mathbf{A} = \begin{bmatrix} -4 & 0 \\ 0 & -1 \end{bmatrix},      \mathbf{B} = \begin{bmatrix} 2 \\ 1 \end{bmatrix},    \mathbf{C} = \begin{bmatrix} 1 & 0 \end{bmatrix},     D=0

and

G(s) = \begin{bmatrix} 1  & 0 \end{bmatrix} \begin{bmatrix} s+4 & 0 \\ 0 & s+1 \end{bmatrix}^{-1}\begin{bmatrix} 2  \\ 1 \end{bmatrix} + 0 =  \frac{\begin{bmatrix} 1  & 0 \end{bmatrix}\begin{bmatrix} s+1 & 0 \\ 0 & s+4 \end{bmatrix}\begin{bmatrix} 2  \\ 1 \end{bmatrix}}{(s+1)(s+4)} = \frac{2}{s+4}

Note that the dynamic models in Parts (a) and (b) are second-order systems, with state-space forms that differ from the original first-order system. However, they both end up with the same transfer function as the given first-order system due to pole–zero   cancellation. As seen in Part (a), the second state cannot be affected by the input matrix \mathbf{B},

G(s) = \frac{\begin{bmatrix} s+1  & 3(s+4) \end{bmatrix}}{(s+1)(s+4)}\begin{bmatrix} 2  \\ 0 \end{bmatrix}

This implies that the second state is uncontrollable by the actuator defined by matrix \mathbf{B}. Similarly, in Part (b), the second state cannot be seen by the output matrix \mathbf{C},

G(s) = \begin{bmatrix} 1  & 0 \end{bmatrix} \frac{\begin{bmatrix} 2(s+1) \\  s+4 \end{bmatrix}}{(s+1)(s+4)}

This implies that the second state is unobservable by the sensor defined by matrix \mathbf{C}.

Related Answered Questions