Question 10.22: Controllability and Observability Consider a dynamic system ...
Controllability and Observability
Consider a dynamic system given by G(s) = 2/(s + 4), which can be written in the statespace form
\dot{x}_1=-4x_1+2u
y=x_1
a. A new state is added and the resulting state-space equation is
\dot{x}_1 = -4x_1 +2u
\dot{x}_2=-x_2
y=x_1 +3x_2
Determine the transfer function for this new model.
b. Determine the transfer function for another model with state-space form
\dot{x}_1 =-4x_1+2u
\dot{x}_2 =-x_2 +u
y =x_1
Learn more on how we answer questions.
a. The system matrices \mathbf{A, B, C}, and D are
\mathbf{A} = \begin{bmatrix} -4 & 0 \\ 0 & -1 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \mathbf{C} = \begin{bmatrix} 1 & 3 \end{bmatrix}, D=0
The transfer function is
G(s) = \begin{bmatrix} 1 & 3 \end{bmatrix} \begin{bmatrix} s+4 & 0 \\ 0 & s+1 \end{bmatrix}^{-1}\begin{bmatrix} 2 \\ 0 \end{bmatrix} + 0 = \frac{\begin{bmatrix} 1 & 3 \end{bmatrix}\begin{bmatrix} s+1 & 0 \\ 0 & s+4 \end{bmatrix}\begin{bmatrix} 2 \\ 0 \end{bmatrix}}{(s+1)(s+4)} = \frac{2}{s+4}
b. Similarly, we have
\mathbf{A} = \begin{bmatrix} -4 & 0 \\ 0 & -1 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \mathbf{C} = \begin{bmatrix} 1 & 0 \end{bmatrix}, D=0
and
G(s) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} s+4 & 0 \\ 0 & s+1 \end{bmatrix}^{-1}\begin{bmatrix} 2 \\ 1 \end{bmatrix} + 0 = \frac{\begin{bmatrix} 1 & 0 \end{bmatrix}\begin{bmatrix} s+1 & 0 \\ 0 & s+4 \end{bmatrix}\begin{bmatrix} 2 \\ 1 \end{bmatrix}}{(s+1)(s+4)} = \frac{2}{s+4}
Note that the dynamic models in Parts (a) and (b) are second-order systems, with state-space forms that differ from the original first-order system. However, they both end up with the same transfer function as the given first-order system due to pole–zero cancellation. As seen in Part (a), the second state cannot be affected by the input matrix \mathbf{B},
G(s) = \frac{\begin{bmatrix} s+1 & 3(s+4) \end{bmatrix}}{(s+1)(s+4)}\begin{bmatrix} 2 \\ 0 \end{bmatrix}
This implies that the second state is uncontrollable by the actuator defined by matrix \mathbf{B}. Similarly, in Part (b), the second state cannot be seen by the output matrix \mathbf{C},
G(s) = \begin{bmatrix} 1 & 0 \end{bmatrix} \frac{\begin{bmatrix} 2(s+1) \\ s+4 \end{bmatrix}}{(s+1)(s+4)}
This implies that the second state is unobservable by the sensor defined by matrix \mathbf{C}.