Question 6.3.7: Converting Equations from Polar to Rectangular Form Convert ...

Converting Equations from Polar to Rectangular Form

Convert each polar equation to a rectangular equation in x and y:

a. r = 5          b. θ = \frac{π}{4}        c. r = 3 csc θ            d. r = -6 cos θ.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

In each case, let’s express the rectangular equation in a form that enables us to recognize its graph.

a. We use r² = x² + y² to convert the polar equation r = 5 to a rectangular equation.

r = 5                                 This is the given polar equation.

r² = 25                             Square both sides.

x² + y² = 25                   Use r² = x² + y² on the left side.

The rectangular equation for r = 5 is x² + y² = 25. The graph is a circle with center at (0, 0) and radius 5.

b. We use \tan θ =\frac{y}{x} to convert the polar equation θ =\frac{\pi}{4} to a rectangular equation in x and y.

θ =\frac{\pi}{4}                       This is the given polar equation.

\tan θ =\tan\frac{\pi}{4}                   Take the tangent of both sides.

tan θ = 1                            \tan\frac{\pi}{4}=1

\frac{y}{x}=1                    Use \tan θ=\frac{y}{x} on the left side.

y = x                         Multiply both sides by x.

The rectangular equation for θ =\frac{\pi}{4} is y = x. The graph is a line that bisects quadrants I and III. Figure 6.28 shows the line drawn in a polar coordinate system.

c. We use r sin θ = y to convert the polar equation r = 3 csc θ to a rectangular equation. To do this, we express the cosecant in terms of the sine.

r = 3 csc θ                     This is the given polar equation.

r=\frac{3}{\sin θ}                           \csc θ=\frac{1}{\sin θ}

r sin θ = 3                      Multiply both sides by sin θ.

y = 3                               Use r sin θ = y on the left side.

The rectangular equation for r = 3 csc θ is y = 3. The graph is a horizontal line three units above the x-axis. Figure 6.29 shows the line drawn in a polar coordinate system.

d. To convert r = -6 cos θ to rectangular coordinates, we multiply both sides by r. Then we use r² = x² + y² on the left side and r cos θ = x on the right side.

r = -6 cos θ                       This is the given polar equation.

r² = -6r cos θ                     Multiply both sides by r.

x² + y² = -6x                     Convert to rectangular coordinates: r² = x² + y²                                                                                 and r cos θ = x.

x² + 6x + y² = 0                Add 6x to both sides.

x² + 6x + 9 + y² = 9                Complete the square on x: \frac{1}{2}·6=3                                                                       and 3² =9.

(x + 3)² + y² = 9                            Factor.

The rectangular equation for r = -6 cos θ is (x + 3)² + y² = 9. This last equation is the standard form of the equation of a circle, (x – h)² + (y – k)² = r², with radius r and center at (h, k). Thus, the graph of (x + 3)² + y² = 9 is a circle with center at (-3, 0) and radius 3.

6.28
6.29

Related Answered Questions

Question: 6.3.4

Verified Answer:

We begin with (x, y) =(-1, \sqrt{3})[/latex...
Question: 6.3.5

Verified Answer:

We begin with (x, y) = (-2, 0) and find a set of p...