Question 6.3.6: Converting Equations from Rectangular to Polar Coordinates C...

Converting Equations from Rectangular to Polar Coordinates

Convert each rectangular equation to a polar equation that expresses r in terms of θ:

a. x + y = 5                        b. (x – 1)² + y² = 1.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Our goal is to obtain equations in which the variables are r and θ rather than x and y. We use x = r cos θ and y = r sin θ. We then solve the equations for r, obtaining equivalent equations that give r in terms of θ.

a.              x + y = 5                    This is the given equation in rectangular                                                               coordinates. The graph is a line passing through                                                      (5, 0) and (0, 5).

r cos θ + r sin θ = 5                  Replace x with r cos θ and y with r sin θ.

r(cos θ + sin θ) = 5                    Factor out r.

r=\frac{5}{\cos θ + \sin θ}                        Divide both sides of the equation by cos θ + sin θ                                                          and solve for r.

Thus, the polar equation for x + y = 5 is r=\frac{5}{\cos θ + \sin θ}.

b.       This is the given equation in                                                                                    rectangular coordinates. The graph is a                                                       circle with radius 1 and center at (h, k) = (1, 0).

(r cos θ – 1)² + (r sin θ)² = 1                  Replace x with r cos θ and y with r sin θ.

r² cos² θ – 2r cos θ + 1 + r² sin² θ = 1                      Use (A – B)² = A² – 2AB + B² to                                                                                  square r cos θ – 1.

r² cos² θ + r² sin² θ – 2r cos θ = 0                      Subtract 1 from both sides and                                                                                          rearrange terms.

r² – 2r cos θ = 0                                  Simplify: r 2 cos² θ + r² sin² θ = r 2(cos² θ +                                                                           sin² θ) = r² · 1 = r².

r(r – 2 cos θ) = 0                              Factor out r.

r = 0           or         r – 2 cos θ = 0                  Set each factor equal to 0.

r = 2 cos θ                                Solve for r.

The graph of r = 0 is a single point, the pole. Because the pole also satisfies the equation r = 2 cos θ (for θ = \frac{\pi}{2}, r = 0), it is not necessary to include the equation r = 0. Thus, the polar equation for (x – 1)² + y² = 1 is r = 2 cos θ.

Related Answered Questions

Question: 6.3.4

Verified Answer:

We begin with (x, y) =(-1, \sqrt{3})[/latex...
Question: 6.3.5

Verified Answer:

We begin with (x, y) = (-2, 0) and find a set of p...