Question 12.5: Demonstrate that an n-fold rotational symmetry axis is a pri...

Demonstrate that an n-fold rotational symmetry axis is a principal axis of inertia, and that in the case n ≥ 3, the two other principal axes can be freely chosen in the plane perpendicular to the first axis.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

If a body has an n-fold symmetry axis, then the tensor of inertia must be equal in two coordinate systems rotated from each other by \varphi = 2π/n:

\widehat{\Theta} = \widehat{\Theta }^{′} =\widehat{A} \widehat{\Theta } \widehat{A}^{-1} .

If we select the z-axis as a rotation axis, the rotation matrix reads

\widehat{A}=\begin{pmatrix} \cos  \varphi & \sin \varphi & 0 \\ −\sin \varphi & \cos \varphi& 0\\ 0 & 0 & 1 \end{pmatrix}

Multiplying the matrices out, one obtains the components Θ^{′}_{ij} of the new tensor of inertia which shall coincide with Θ_{ij} .

Θ^{′}_{11}= Θ_{11} = Θ_{11}  cos^{2}  \varphi +Θ_{22}  \sin^{2}  \varphi +2 Θ_{12}  \sin \varphi   \cos \varphi,

 

Θ^{′}_{22}= Θ_{22} = Θ_{11}  \sin^{2}  \varphi + Θ_{22} \cos^{2}  \varphi −2 Θ_{12}  \sin  \varphi   \cos  \varphi,

 

Θ^{′}_{12}= Θ_{12} =− Θ_{11}  \cos \varphi   \sin \varphi + Θ_{22}  \cos \varphi   \sin  \varphi+ Θ_{12}(1 −2 \sin^{2}  \varphi),

 

Θ^{′}_{13}= Θ_{13} =+ Θ_{13}  \cos \varphi + Θ_{23}  \sin  \varphi,

 

Θ^{′}_{23}= Θ_{23} =− Θ_{13}  \sin \varphi+ Θ_{23} \cos  \varphi.

The determinant of the system of the last two equations,

\begin{vmatrix} \cos \varphi −1 & \sin \varphi \\ -\sin \varphi & \cos \varphi −1 \end{vmatrix}= 2(1− \cos   \varphi),

vanishes only for \varphi = 0, 2π, . . .. If there is symmetry (n ≥ 2), then we must have Θ_{13} = Θ_{23} = 0, i.e., the z-axis must be a principal axis.

Two of the remaining three equations are identical, and there remains the system of equations

(Θ_{22} −Θ_{11})  \sin^{2} \varphi +2Θ_{12}  \sin \varphi  \cos \varphi = 0,

 

(Θ_{22} −Θ_{11}) \cos \varphi   \sin \varphi −2Θ_{12}  \sin^{2} \varphi = 0.

The determinant of coefficients has the value

D =−2 \sin^{4} \varphi −2 \sin^{2}  \varphi  \cos^{2}  \varphi =−2 \sin^{2}  \varphi.

There holds D = 0 for \varphi = 0,π, 2π, . . . . Hence, Θ_{11} = Θ_{22}   and   Θ_{12} = 0, if n>2. If the axis of rotational symmetry z is at least 3-fold, the tensor of inertia is diagonal for each orthogonal pair of axes in the x,y-plane.

Related Answered Questions