Question 11.2: Derive angular speed ωψrT of the rotor-flux-linkage referenc...

Derive angular speed w_{ψrT} of the rotor-flux-linkage reference frame Equation (11.51) using Equation (11.42).

u_{rT}=R_{r}i_{rT}+(\omega _{\Psi _{r}T}-P\Omega _{r})\Psi _{r\Psi }=0            (11.42)

\omega _{\Psi _{\Psi r}T}=\frac{R_{r}}{L_{r}}\frac{L_{m}}{\Psi _{r\Psi }} i_{sT}+P\Omega _{r}=\frac{L_{m}}{\tau _{r}\Psi _{r\Psi }} i_{sT}+P\Omega _{r}               (11.51)

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The equation for angular speed from Equation (11.42) is   u_{rT} = R_{r}i_{rT} + (ω_{ψ_{r}T} – pΩ_{r} ) ψ_{rψ} = 0.   Solving it for the angular velocity yields the following.

ω_{ψ_{r}T}ψ_{rψ} = pΩ_{r}ψ_{rψ} – R_{r}i_{rT}

Rotor current written in terms of its components is

i_{r} = i_{rψ} + ji_{rT} = (ψ_{r} – L_{m}i_{s}) / L_{r} = (ψ_{rψ} + jψ_{rT} – L_{m} ( i_{sψ} + ji_{sT} )) / L_{r} ⇒ i_{rT} = (ψ_{rT} – L_{m}i_{sT} )/ L_{r}

Because ψrT = 0 in the rotor-flux-linkage reference frame, irT =- Lm /Lr. Substitution results in this equation for angular velocity.

ω_{ψrT} = \frac {pΩ_{r}ψ_{rψ} +R_{r}i_{sT}L_{m} / L_{r} }{Ψ_{rΨ}} =pΩ_{r} + \frac {R_{r}L_{m}i_{sT} } {L_{r}ψ_{rψ} } = pΩ_{r} + \frac {R_{r}L_{m} } { L_{r}ψ_{rψ} } i_{sT} = pΩ_{r} + \frac {1 L_{m} }{τ_{r}ψ_{rψ} } i_{sT}

The above is identical to Equation(11.51).

Related Answered Questions