Question 5.7: Derive N𝜃 for the case of applied bending moment M0 at edge ...

Derive N_{\theta} for the case of applied bending moment M_{0} at edge x=0 for a short cylinder of length l.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The four boundary conditions are as follows:

At x=0,

-D\left(\frac{ d ^{2} w}{ d x^{2}}\right)=M_{0}

 

-D\left(\frac{ d ^{3} w}{ d x^{3}}\right)=0

At x=l,

-D\left(\frac{ d ^{2} w}{ d x^{3}}\right)=0

 

-D\left(\frac{ d ^{3} w}{ d x^{3}}\right)=0

From Eq. (5.26), the second derivative is given by

w=A_{1} \sin \beta x \sinh \beta x+A_{2} \sin \beta x \cosh \beta x +A_{1} \cos \beta x \sinh \beta x+A_{4} \cos \beta x \cosh \beta x                         (5.26)

\frac{ d ^{2} w}{ d x^{2}}=2 \beta^{2}(A_{1} \cos \beta x \cosh \beta x+A_{2} \cos \beta x \sinh \beta x

 

-A_{3} \sin \beta x \cosh \beta x-A_{4} \sin \beta x \sinh \beta x)                         (1)

whereas the third derivative is expressed as

\frac{ d ^{3} w}{ d x^{3}}=2 \beta^{2} [A_{1}(\cos \beta x \sinh \beta x-\sin \beta x \cosh \beta x)

 

+A_{2}(\cos \beta x \cosh \beta x-\sin \beta x \sinh \beta x)

 

-A_{3}(\sin \beta x \sinh \beta x+\cos \beta x \cosh \beta x)

 

-A_{4}(\sin \beta x \cosh \beta x+\cos \beta x \sinh \beta x)]                    (2)

Substituting Eq. (1) into the first boundary condition gives

A_{1}=\frac{-M_{0}}{2 D \beta^{2}}

Substituting Eq. (2) into the second boundary condition gives

A_{2}=A_{3} ,

and from the third and fourth boundary conditions, the relationships

A_{3}=\frac{M_{0}}{2 D \beta^{2}}\left(\frac{\sin \beta l \cos \beta l+\sinh \beta l \cosh \beta l}{\sinh ^{2} \beta l-\sin ^{2} \beta l}\right)

And

A_{4}=\frac{-M_{0}}{2 D \beta^{2}}\left(\frac{\sin ^{2} \beta l+\sinh ^{2} \beta l}{\sinh ^{2} \beta l-\sin ^{2} \beta l}\right)

are obtained.

From Eq. (5.19),

N_{\theta}=\frac{-E t w}{r}                         (5.19)

N_{\theta}=\frac{E t w}{r}

= \frac{E t}{r} (A_{1} \sin \beta x \sinh \beta x+A_{2} \sin \beta x \cosh \beta x + A_{3} \cos \beta x \sinh \beta x+A_{4} \cos \beta x \cosh \beta x)                   (3)

Using the values of A_{1}, A_{2}, A_{3}, A_{4} thus obtained and the terminology of Table 5.3, Eq. (3) reduces to

N_{\theta}=\frac{E t}{r} \frac{M_{0}}{2 D \beta^{2}}

 

[-\sin \beta x \sinh \beta x+\frac{C_{3}}{C_{1}}(\sin \beta x \cosh \beta x

 

+\cos \beta x \sinh \beta x)-\frac{C_{2}}{C_{1}} \cos \beta x \cosh \beta x]

or

  N_{\theta}=2 r M_{0} \beta^{2}\left(-V_{8}+\frac{C_{3}}{C_{1}} V_{2}-\frac{C_{2}}{C_{1}} V_{7}\right)

 

Table 5.3 Various functions of short cylinders.

Function

w \frac{M_{0}}{2 \beta^{2} D}\left[\frac{-C_{2}}{C_{1}} V_{7}+\frac{C_{3}}{C_{1}} V_{2}-V_{8}\right] \frac{Q_{0}}{2 \beta^{3} D}\left[\frac{C_{4}}{C_{1}} V_{7}-\frac{C_{5}}{C_{1}} V_{5}-\frac{C_{6}}{C_{1}} V_{6}\right] \frac{\theta_{0}}{\beta}\left[\frac{C_{6}}{C_{1}} V_{5}-\frac{C_{5}}{C_{1}} V_{6}-\frac{C_{4}}{C_{1}} V_{8}\right] \quad \Delta_{0}\left[V_{7}-\frac{C_{3}}{C_{1}} V_{1}-\frac{C_{2}}{C_{1}} V_{8}\right]
\theta \frac{M_{0}}{2 \beta D}\left[\frac{C_{2}}{C_{1}} V_{1}+\frac{2 C_{3}}{C_{1}} V_{7}-V_{2}\right] \frac{-Q_{0}}{2 \beta^{2} D}\left[\frac{C_{4}}{C_{1}} V_{1}+\frac{C_{5}}{C_{1}} V_{4}+\frac{C_{6}}{C_{1}} V_{3}\right] \theta_{0}\left[\frac{C_{6}}{C_{1}} V_{4}-\frac{C_{5}}{C_{1}} V_{3}-\frac{C_{4}}{C_{1}} V_{2}\right] \quad \beta \Delta_{0}\left[-V_{1}+2 \frac{C_{3}}{C_{1}} V_{8}-\frac{C_{2}}{C_{1}} V_{2}\right]
M_{x} M_{0}\left[\frac{C_{2}}{C_{1}} V_{8}-\frac{C_{3}}{C_{1}} V_{1}-V_{7}\right] \frac{Q_{0}}{\beta}\left[-\frac{C_{4}}{C_{1}} V_{8}-\frac{C_{5}}{C_{1}} V_{6}+\frac{C_{6}}{C_{1}} V_{5}\right] 2 \beta D \theta_{0}\left[\frac{C_{6}}{C_{1}} V_{6}+\frac{C_{5}}{C_{1}} V_{5}-\frac{C_{4}}{C_{1}} V_{7}\right] 2 \beta^{2} D \Delta_{0}\left[-V_{8}+\frac{C_{3}}{C_{1}} V_{2}-\frac{C_{2}}{C_{1}} V_{7}\right]
N_{\theta} 2 B^{2} r M_{0}\left[-\frac{C_{2}}{C_{1}} V_{7}+\frac{C_{3}}{C_{1}} V_{2}-V_{8}\right] 2 \beta r Q_{0}\left[\frac{C_{4}}{C_{1}} V_{7}-\frac{C_{5}}{C_{1}} V_{5}-\frac{C_{6}}{C_{1}} V_{6}\right] \frac{E t \theta_{0}}{\beta}\left[\frac{C_{6}}{C_{1}} V_{6}+\frac{C_{5}}{C_{1}} V_{5}-\frac{C_{4}}{C_{1}} V_{7}\right] \frac{E t \Delta_{0}}{r}\left[V_{7}+\frac{C_{3}}{C_{1}} V_{1}-\frac{C_{2}}{C_{1}} V_{8}\right]
Q_{x} -\beta M_{0}\left[\frac{C_{2}}{C_{1}} V_{2}-\left(\frac{2 C_{3}}{C_{1}}+1\right) V_{8}\right] Q_{0}\left[\frac{C_{4}}{C_{1}} V_{2}+\frac{C_{5}}{C_{1}} V_{3}-\frac{C_{6}}{C_{1}} V_{4}\right] 2 \beta^{2} D \theta_{0}\left[\frac{C_{6}}{C_{1}} V_{3}+\frac{C_{5}}{C_{1}} V_{4}+\frac{C_{4}}{C_{1}} V_{1}\right]-2 \beta^{3} D \Delta_{0}\left[-V_{2}+2 \frac{C_{3}}{C_{1}} V_{7}+\frac{C_{2}}{C_{1}} V_{1}\right]
Constants Variables
C_{1}=\sinh ^{2} \beta l-\sin ^{2} \beta l V_{1}=\cosh \beta x \sin \beta x-\sinh \beta x \cos \beta x
C_{2}=\sinh ^{2} \beta l+\sin ^{2} \beta l V_{2}=\cosh \beta x \sin \beta x+\sinh \beta x \cos \beta x
C_{3}=\sinh \beta l \cosh \beta l+\sin \beta l \cos \beta l V_{3}=\cosh \beta x \cos \beta x-\sinh \beta x \sin \beta x
C_{4}=\sinh \beta l \cosh \beta l-\sin \beta l \cos \beta l V_{4}=\cosh \beta x \cos \beta x+\sinh \beta x \sin \beta x
C_{5}=\sin ^{2} \beta l V_{5}=\cosh \beta x \sin \beta x
C_{6}=\sinh ^{2} \beta l V_{6}=\sinh \beta x \cos \beta x
V_{7}=\cosh \beta x \cos \beta x
V_{8}=\sinh \beta x \sin \beta x

Related Answered Questions

Question: 5.8

Verified Answer:

A free-body diagram of junction A is shown in Figu...