Question 1.25: Derive the differential equation for equilibrium in polar co...
Derive the differential equation for equilibrium in polar coordinates.
Learn more on how we answer questions.
Figure E. 1.34 shows an element under radial stress \sigma_r and tangential stress \sigma_\theta , respectively. The shear stress \tau{_\theta} _r equal to \tau _r {_\theta} derived earlier in Eq. (1.17). Considering equilibrium of forces in radial direction,
\tau_{xy}=\tau_{yx} (1.17d)
-\sigma_r r d \theta+\left(\sigma_r+\frac{\partial \sigma_r}{\partial r} d r\right)(r+d r) d \theta-\sigma_\theta d r
\sin \frac{d \theta}{2}-\left(\sigma_\theta+\frac{\partial \sigma_\theta}{\partial \theta} d \theta\right) d r \sin \frac{d \theta}{2}-\tau_{r \theta} d r
\cos \frac{d \theta}{2}+\left(\tau_{r \theta}+\frac{\partial \tau_{r \theta}}{\partial \theta} d \theta\right) d r \cos \frac{d \theta}{2}+F_r r d r d \theta = 0
Neglecting higher order differential terms, and taking,
\sin \frac{d \theta}{2} \approx \frac{d \theta}{2} \text { and } \cos \frac{d \theta}{2} \approx 1,
\frac{\partial \sigma_r}{\partial r}+\frac{1}{r} \frac{\partial \tau_{r \theta}}{\partial \theta}+\frac{\sigma_r-\sigma_\theta}{r}+F_r=0 (i)
Now consider equilibrium of forces in tangential direction,
-\tau_{r \theta} r d \theta+\left(\tau_{r \theta}+\frac{\partial \tau_{r \theta}}{\partial r} d r\right)(r+d r) d \theta-\sigma_\theta d r \cos \frac{d \theta}{2}+\left(\sigma_\theta+\frac{\partial \sigma_\theta}{\partial \theta} d \theta\right) d r \cos \frac{d \theta}{2}+
\tau_{r \theta} d r \sin \frac{d \theta}{2}+\left(\tau_{r \theta}+\frac{\partial \tau_{r \theta}}{\partial \theta} d \theta\right) d r \sin \frac{d \theta}{2}+
F_\theta r d r d \theta=0
which reduces to,
\frac{1}{r} \frac{\partial \sigma_\theta}{\partial \theta}+\frac{\partial \tau_{r \theta}}{\partial r}+2 \frac{\tau_{r \theta}}{r}+F_\theta=0 (ii)
