Question 1.25: Derive the differential equation for equilibrium in polar co...

Derive the differential equation for equilibrium in polar coordinates.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Figure E. 1.34 shows an element under radial stress \sigma_r and tangential stress \sigma_\theta , respectively. The shear stress \tau{_\theta} _r equal to \tau _r {_\theta} derived earlier in Eq. (1.17). Considering equilibrium of forces in radial direction,

\tau_{xy}=\tau_{yx}             (1.17d)

 

-\sigma_r r d \theta+\left(\sigma_r+\frac{\partial \sigma_r}{\partial r} d r\right)(r+d r) d \theta-\sigma_\theta d r

 

\sin \frac{d \theta}{2}-\left(\sigma_\theta+\frac{\partial \sigma_\theta}{\partial \theta} d \theta\right) d r \sin \frac{d \theta}{2}-\tau_{r \theta} d r

 

\cos \frac{d \theta}{2}+\left(\tau_{r \theta}+\frac{\partial \tau_{r \theta}}{\partial \theta} d \theta\right) d r \cos \frac{d \theta}{2}+F_r r d r d \theta = 0

Neglecting higher order differential terms, and taking,

\sin \frac{d \theta}{2} \approx \frac{d \theta}{2} \text { and } \cos \frac{d \theta}{2} \approx 1,

 

\frac{\partial \sigma_r}{\partial r}+\frac{1}{r} \frac{\partial \tau_{r \theta}}{\partial \theta}+\frac{\sigma_r-\sigma_\theta}{r}+F_r=0           (i)

Now consider equilibrium of forces in tangential direction,

-\tau_{r \theta} r d \theta+\left(\tau_{r \theta}+\frac{\partial \tau_{r \theta}}{\partial r} d r\right)(r+d r) d \theta-

 

\sigma_\theta d r \cos \frac{d \theta}{2}+\left(\sigma_\theta+\frac{\partial \sigma_\theta}{\partial \theta} d \theta\right) d r \cos \frac{d \theta}{2}+

 

\tau_{r \theta} d r \sin \frac{d \theta}{2}+\left(\tau_{r \theta}+\frac{\partial \tau_{r \theta}}{\partial \theta} d \theta\right) d r \sin \frac{d \theta}{2}+

 

F_\theta r d r d \theta=0

which reduces to,

\frac{1}{r} \frac{\partial \sigma_\theta}{\partial \theta}+\frac{\partial \tau_{r \theta}}{\partial r}+2 \frac{\tau_{r \theta}}{r}+F_\theta=0           (ii)

Screenshot 2022-10-07 234644

Related Answered Questions

Question: 1.30

Verified Answer:

Static deflection of the beam, \sigma_{s t}...
Question: 1.26

Verified Answer:

An element ABCD shown in Fig. 1.35, deforms to [la...