Question 11.3: Derive the equations of motion for a particle of mass m movi...

Derive the equations of motion for a particle of mass m moving in a plane under a central force  \mathbf{F}=-\left(\mu m / r^2\right) \mathbf{e}_r,  where μ is a constant and cylindrical coordinates are used.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The holonomic constraint z = 0 is evident, and the velocity vector is   \mathbf{v}=\dot{r} \mathbf{e}_r  +  r \dot{\phi} \mathbf{e}_\phi.  Hence, the kinetic energy is given by

T=\frac{1}{2} m\left(\dot{r}^2  +  r^2 \dot{\phi}^2\right)                           (11.37a)

The central force is conservative with potential energy

V=-\mu m / r,                            (11.37b)

as shown in (7.62) with   \mu \equiv M G.  Thus, the Lagrangian (11.34) for  this conservative scleronomic dynamical system is

V(r)=V_0  –  \frac{G m M}{r}                       (7.62)

L\left(\dot{q}_r, q_r, t\right) \equiv T\left(\dot{q}_r, q_r, t\right)  –  V\left(q_r\right),                              (11.34)

L=\frac{1}{2} m\left(\dot{r}^2  +  r^2 \dot{\phi}^2\right)  +  \frac{\mu m}{r}                     (11.37c)

The generalized coordinates are  \left(q_1, q_2\right)=(r, \phi),  the generalized  velocity components are  \left(\dot{q}_1, \dot{q}_2\right)=(\dot{r}, \dot{\phi}),  and with (11.35) in mind we use (11.37c) to obtain

\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_k}\right)  –  \frac{\partial L}{\partial q_k}=0,                                 (11.35)

\frac{\partial L}{\partial \dot{r}}=m \dot{r}, \quad \frac{\partial L}{\partial \dot{\phi}}=m r^2 \dot{\phi}, \quad \frac{\partial L}{\partial r}=m r \dot{\phi}^2  –  \frac{\mu m}{r^2}, \quad \frac{\partial L}{\partial \phi}=0 .                                (11.37d)

Lagrange’s equations (11.35) thus yield the equations of motion for  this conservative system with two degrees of freedom:

\ddot{r}  –  r \dot{\phi}^2  +  \frac{\mu}{r^2}=0, \quad \frac{d}{d t}\left(r^2 \dot{\phi}\right)=0 .                         (11.37e)

Related Answered Questions

Question: 11.4

Verified Answer:

The kinetic energy of P is   T=\frac{1}{2} ...
Question: 11.1

Verified Answer:

The three independent generalized coordinates and ...