Question 11.3: Derive the equations of motion for a particle of mass m movi...
Derive the equations of motion for a particle of mass m moving in a plane under a central force \mathbf{F}=-\left(\mu m / r^2\right) \mathbf{e}_r, where μ is a constant and cylindrical coordinates are used.
Learn more on how we answer questions.
The holonomic constraint z = 0 is evident, and the velocity vector is \mathbf{v}=\dot{r} \mathbf{e}_r + r \dot{\phi} \mathbf{e}_\phi. Hence, the kinetic energy is given by
T=\frac{1}{2} m\left(\dot{r}^2 + r^2 \dot{\phi}^2\right) (11.37a)
The central force is conservative with potential energy
V=-\mu m / r, (11.37b)
as shown in (7.62) with \mu \equiv M G. Thus, the Lagrangian (11.34) for this conservative scleronomic dynamical system is
V(r)=V_0 – \frac{G m M}{r} (7.62)
L\left(\dot{q}_r, q_r, t\right) \equiv T\left(\dot{q}_r, q_r, t\right) – V\left(q_r\right), (11.34)
L=\frac{1}{2} m\left(\dot{r}^2 + r^2 \dot{\phi}^2\right) + \frac{\mu m}{r} (11.37c)
The generalized coordinates are \left(q_1, q_2\right)=(r, \phi), the generalized velocity components are \left(\dot{q}_1, \dot{q}_2\right)=(\dot{r}, \dot{\phi}), and with (11.35) in mind we use (11.37c) to obtain
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_k}\right) – \frac{\partial L}{\partial q_k}=0, (11.35)
\frac{\partial L}{\partial \dot{r}}=m \dot{r}, \quad \frac{\partial L}{\partial \dot{\phi}}=m r^2 \dot{\phi}, \quad \frac{\partial L}{\partial r}=m r \dot{\phi}^2 – \frac{\mu m}{r^2}, \quad \frac{\partial L}{\partial \phi}=0 . (11.37d)
Lagrange’s equations (11.35) thus yield the equations of motion for this conservative system with two degrees of freedom:
\ddot{r} – r \dot{\phi}^2 + \frac{\mu}{r^2}=0, \quad \frac{d}{d t}\left(r^2 \dot{\phi}\right)=0 . (11.37e)