Question 7.1: Derive the moment expression for a uniformly loaded, simply ...

Derive the moment expression for a uniformly loaded, simply supported circular plate of radius a. For 𝜇 =0.3, plot the moment diagram and determine the maximum deflection, rotation, and stress values.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Figure 7.3, the shear Q at any radius r is given by 2 \pi r Q=\pi r^{2} P , or

Q=\frac{P r}{2}

Therefore, from Eqs. (7.7a) and (7.7b),

\frac{ d ^{3} w}{ d r^{3}}+\frac{1}{r} \frac{ d ^{2} w}{ d r^{2}}-\frac{1}{r^{2}} \frac{ d w}{ d r}=\frac{Q}{D}                    (7.7a)

\frac{ d }{ d r}\left[\frac{1}{r} \frac{ d }{ d r}\left(r \frac{ d w}{ d r}\right)\right]=\frac{Q}{D}                   (7.7b)

\frac{ d }{ d r}\left[\frac{1}{r} \frac{ d }{ d r}\left(r \frac{ d w}{ d r}\right)\right]=\frac{P r}{2 D}

Integrating both sides gives

\frac{ d }{ d r}\left(r \frac{ d w}{ d r}\right)=\frac{P r^{3}}{4 D}+C_{1} r

A second integration gives the expression for the slope:

\theta=\frac{ d w}{ d r}=\frac{P r^{3}}{16 D}+\frac{C_{1} r}{2}+\frac{C_{2}}{r} ,                                (1)

and the third integration gives the deflection w as

w=\frac{P r^{4}}{64 D}+\frac{C_{1} r^{2}}{4}+C_{2} \ln r+C_{3}  .                          (2)

At the center of the plate, r =0 and the slope is zero due to symmetry. Hence, from Eq. (1), C_{2} =0 .

At r =a, the moment M_{r} =0 and Eqs. (7.3a) and (7.3b) give

M_{ r }=-D\left(\frac{ d ^{2} w}{ d r^{2}}+\frac{\mu}{r} \frac{ d w}{ d r}\right)                                (7.3a)

=D\left(\frac{1}{r} \frac{ d w}{ d r}+\mu \frac{\phi}{r}\right)                                (7.3b)

C_{1}=-\frac{P a^{2}}{8 D}\left(\frac{3+\mu}{1+\mu}\right)

At r =a, the deflection is zero, and Eq. (2) gives

C_{3}=\frac{P a^{4}}{64 D}\left(\frac{6+2 \mu}{1+\mu}-1\right)

Hence, the deflection as expressed by Eq. (2) becomes

w=\frac{P r^{4}}{64 D}-\frac{r^{2}}{4}\left(\frac{3+\mu}{1+\mu}\right) \frac{P a^{2}}{8 D} +\frac{P a^{4}}{64 D}\left(\frac{6+2 \mu}{1+\mu}-1\right)

or

w=\frac{P}{64 D}\left(a^{2}-r^{2}\right)\left(\frac{5+\mu}{1+\mu} \cdot a^{2}-r^{2}\right)                            (3)

and

\theta=\frac{ d w}{ d r}=\frac{P r}{16 D}\left(r^{2}-\frac{3+\mu}{1+\mu} \cdot a^{2}\right)                       (4)

The maximum deflection occurs in the middle where r =0. Hence,

w_{\max }=\frac{P a^{4}}{64 D}\left(\frac{5+\mu}{1+\mu}\right)

\frac{P a^{4}}{64}\left(\frac{5+\mu}{1+\mu}\right) \frac{12\left(1-\mu^{2}\right)}{E t^{3}}

and with 𝜇 =0.30

w_{\max }=\frac{0.696 P a^{4}}{E t^{3}}

The maximum rotation occurs at the edge where r =a. Hence,

\theta_{\max }=\frac{-P a^{3}}{8 D(1+\mu)}=\frac{-3}{2} P a^{3} \frac{1-\mu}{E t^{3}}

and with 𝜇 =0.30

\theta_{\max }=-1.05 \frac{P a^{3}}{E t^{3}}

The moment expression is obtained by substituting Eq. (3) into Eqs. (7.3a), (7.3b), and (7.4). Hence,

M_{ t }=-D\left(\frac{\phi}{r}+\mu \frac{ d \phi}{ d r}\right)                                   (7.4)

M_{r}=\frac{P}{16}(3+\mu)\left(a^{2}-r^{2}\right)                            (5)

M_{t}=\frac{P}{16}\left[a^{2}(3+\mu)-r^{2}(1+3 \mu)\right]                             (6)

A plot of Eqs. (5) and (6) for 𝜇 =0.3 is shown in Figure 7.4. The plot indicates that the maximum moment occurs in the center and is given by

M_{\max }=\frac{3.3 P a^{2}}{16}

or

\sigma_{\max }=\frac{6 M}{t^{2}}=\frac{1.24 P a^{2}}{t^{2}}
7 3
7 4

Related Answered Questions