Question 14.5: Design of a Helical Extension Spring for Cyclic Loading Prob...
Design of a Helical Extension Spring for Cyclic Loading
Problem Design an extension spring for a dynamic load over a given deflection.
Given The spring must give a minimum force of 50 lb and a maximum force of 85 lb over a dynamic deflection of 0.50 in. The forcing frequency is 500 rpm. An infinite life is desired.
Assumptions Standard hooks will be used at each end. Music wire (ASTM A228) will be used since the loads are dynamic. Setting and peening cannot be used to obtain a higher endurance strength in an extension spring.
Learn more on how we answer questions.
See Figure 14-24 (p. 828) and Table 14-14 (pp. 829-830).
1 Assume an 0.177 in trial wire diameter from the available sizes in Table 14-2 (p. 791). Assume a spring index of C = 9 and use it to calculate the mean coil diameter D from equation 14.5 (p. 797).
C=\frac{D}{d} (14.5)
D=C d=9(0.177)=1.59 \text { in } (a)
2 Use the assumed value of C to find an appropriate value of initial coil stress \tau _{i} from equations 14.21 (p. 821):
k=\frac{F-F_i}{y}=\frac{d^4 G}{8 D^3 N_a} (14.21)
\begin{aligned} \tau_{i_1} & \cong-4.231 C^3+181.5 C^2-3387 C+28640 \\ &=-4.231(9)^3+181.5(9)^2-3387(9)+28640=9774 \text { psi } \end{aligned} (b)
\begin{aligned} \tau_{i_2} & \cong-2.987 C^3+139.7 C^2-3427 C+38404 \\ &=-2.987(9)^3+139.7(9)^2-3427(9)+38404=16699 psi \end{aligned} (c)
\tau_i \cong \frac{\tau_{i_1}+\tau_{i_2}}{2}=\frac{9774+16699}{2}=13237 psi (d)
3 Find the direct shear factor:
K_s=1+\frac{0.5}{C}=1+\frac{0.5}{9}=1.06 (e)
4 Substitute K_{s} from step 3 and the value of \tau _{i} from equation (d) of step 2 for \tau _{max} in equation 14.8b (p. 798) to find the corresponding initial coil-tension force F_{i}:
\begin{aligned} \tau_{\max } &=\frac{8 F C}{\pi d^2}+\frac{4 F}{\pi d^2}=\frac{8 F C+4 F}{\pi d^2} \\ &=\frac{8 F C}{\pi d^2}\left\lgroup1+\frac{1}{2 C}\right\rgroup =\frac{8 F D}{\pi d^3}\left\lgroup1+\frac{0.5}{C}\right\rgroup \\ \tau_{\max } &=K_s \frac{8 F D}{\pi d^3} \quad \quad \text { where } \quad K_s=\left\lgroup1+\frac{0.5}{C}\right\rgroup \end{aligned} (14.8b)
F_i=\frac{\pi d^3 \tau_i}{8 K_s D}=\frac{\pi(0.177)^3(13237)}{8(1.06)(1.59)}=17.1 lb (f)
Check that this force is less than the required minimum applied force F_{min}, which in this case, it is. Any applied force smaller than F_{i} will not deflect the spring.
5 Find the mean and alternating forces from equation 14.16a (p. 812):
\begin{array}{l} F_a=\frac{F_{\max }-F_{\min }}{2} \\F_m=\frac{F_{\max }+F_{\min }}{2} \end{array} (14.16a)
\begin{array}{c} F_a=\frac{F_{\max }-F_{\min }}{2}=\frac{85-50}{2}=17.5 lb \\ F_m=\frac{F_{\max }+F_{\min }}{2}=\frac{85+50}{2}=67.5 lb \end{array} (g)
6 Use the direct shear factor K_{s} and previously assumed values to find the mean stress* \tau _{m}:
\tau_m=K_s \frac{8 F_m D}{\pi d^3}=1.06 \frac{8(67.5)(1.59)}{\pi(0.177)^3}=52122 psi (h)
7 Find the Wahl factor K_{w} and use it to calculate the alternating shear stress \tau _{a} in the coil.
K_w=\frac{4 C-1}{4 C-4}+\frac{0.615}{C}=\frac{4(9)-1}{4(9)-4}+\frac{0.615}{9}=1.16 (i)
\tau_a=K_w \frac{8 F_a D}{\pi d^3}=1.16 \frac{8(17.5)(1.59)}{\pi(0.177)^3}=14877 psi (j)
8 Find the ultimate tensile strength of this music-wire material from equation 14.3 and Table 14-4 (p. 792). Use it to find the ultimate shear strength from equation 14.4 and the torsional yield strength for the coil body from Table 14-12, assuming no set removal.
S_{u t} \cong A d^b (14.3)
S_{u s} \cong 0.67 S_{u t} (14.4)
\begin{array}{l} S_{u t}=A d^b=184649(0.177)^{-0.1625}=244633 psi \\ S_{u s}=0.667 S_{u t}=163918 psi \end{array} (k)
S_{y s}=0.45 S_{u t}=0.45(244633)=110094 psi (l)
9 Find the wire endurance limit for unpeened springs from equation 14.14 (p. 805) and convert it to a fully reversed endurance strength with equation 14.18b (p. 814).
S_{m s} \cong 0.9 S_{u s} \cong 0.9\left(0.67 S_{u t}\right) \cong 0.6 S_{u t} (14.14)
S_{e s}=0.5 \frac{S_{e w} S_{u s}}{S_{u s}-0.5 S_{e w}} (14.18b)
S_{e w}=45000 psi (m)
S_{e s}=0.5 \frac{S_{e w} S_{u s}}{S_{u s}-0.5 S_{e w}}=0.5 \frac{45000(163918)}{163918-0.5(45000)}=26080 psi (n)
10 The fatigue safety factor for the coils in torsion is calculated from equation 14.18a (p. 814).
N_{f_s}=\frac{S_{e s}\left(S_{u s}-\tau_i\right)}{S_{e s}\left(\tau_m-\tau_i\right)+S_{u s} \tau_a} (14.18a)
\begin{array}{c} C_1=\frac{2 R_1}{d}=\frac{2 D}{2 d}=C=9 \\ K_b=\frac{4 C_1^2-C_1-1}{4 C_1\left(C_1-1\right)}=\frac{4(9)^2-(9)-1}{4(9)(9-1)}=1.09 \end{array} (o)
Note that the minimum stress due to force F_{min} is used in this calculation, not the coil-winding stress from equation (d).
11 The stresses in the end hooks also need to be determined. The bending stresses in the hook are found from equation 14.24 (p. 823):
\sigma_A=K_b \frac{16 D F}{\pi d^3}+\frac{4 F}{\pi d^2} (14.24a)
\text {were} \quad K_b=\frac{4 C_1^2-C_1-1}{4 C_1\left(C_1-1\right)} (14.24b)
\text {and} \quad C_1=\frac{2 R_1}{d} (14.24c)
\begin{array}{c} C_1=\frac{2 R_1}{d}=\frac{2 D}{2 d}=C=9 \\ K_b=\frac{4 C_1^2-C_1-1}{4 C_1\left(C_1-1\right)}=\frac{4(9)^2-(9)-1}{4(9)(9-1)}=1.09 \end{array} (p)
\begin{array}{l} \sigma_a=K_b \frac{16 D F_a}{\pi d^3}+\frac{4 F_a}{\pi d^2}=1.09 \frac{16(1.59)(17.5)}{\pi(0.177)^3}+\frac{4(17.5)}{\pi(0.177)^2}=28626 psi \\ \sigma_m=K_b \frac{16 D F_m}{\pi d^3}+\frac{4 F_m}{\pi d^2}=1.09 \frac{16(1.59)(67.5)}{\pi(0.177)^3}+\frac{4(67.5)}{\pi(0.177)^2}=110416 psi \end{array} (q)
\sigma_{\min }=K_b \frac{16 D F_{\min }}{\pi d^3}+\frac{4 F_{\min }}{\pi d^2}=1.09 \frac{16(1.59)(50)}{\pi(0.177)^3}+\frac{4(50)}{\pi(0.177)^2}=81790 psi (r)
12 Convert the torsional endurance strength to a tensile endurance strength with equation 14.4 (p. 793) and use it and the ultimate tensile strength from step 8 in equation 14.18 (p. 814) to find a fatigue safety factor for the hook in bending:
S_{u s} \cong 0.67 S_{u t} (14.4)
N_{f_s}=\frac{S_{e s}\left(S_{u s}-\tau_i\right)}{S_{e s}\left(\tau_m-\tau_i\right)+S_{u s} \tau_a} (14.18a)
S_{e s}=0.5 \frac{S_{e w} S_{u s}}{S_{u s}-0.5 S_{e w}} (14.18b)
\begin{aligned} S_e &=\frac{S_{e s}}{0.67}=\frac{26080}{0.67}=38925 psi \\ N_{f_b} &=\frac{S_e\left(S_{u t}-\sigma_{\min }\right)}{S_e\left(\sigma_{\text {mean }}-\sigma_{\min }\right)+S_{u t} \sigma_{\text {alt }}} \\ &=\frac{38925(244633-81790)}{38925(110416-81790)+244633(28626)}=0.78 \end{aligned} (s)
13 The torsional stresses in the hook are found from equation 14.25 (p. 823) using an assumed value of C_{2} = 5.
\tau_B=K_{w_2} \frac{8 D F}{\pi d^3} (14.25a)
\text {where} \quad K_{W_2}=\frac{4 C_2-1}{4 C_2-4} (14.25b)
\text {and} \quad C_2=\frac{2 R_2}{d} (14.25c)
\begin{array}{l} R_2=\frac{C_2 d}{2}=\frac{5(0.177)}{2}=0.44 \text { in } \\ K_{w_2}=\frac{4 C_2-1}{4 C_2-4}=\frac{4(5)-1}{4(5)-4}=1.2 \end{array} (t)
\begin{aligned} \tau_{B_a} &=K_{w_2} \frac{8 D F_a}{\pi d^3}=1.19 \frac{8(1.59) 17.5}{\pi(0.177)^3}=15202 psi \\ \tau_{B_m} &=K_{w_2} \frac{8 D F_m}{\pi d^3}=1.19 \frac{8(1.59) 67.5}{\pi(0.177)^3}=58637 psi \\ \tau_{B_{\min }} &=K_{w_2} \frac{8 D F_{\min }}{\pi d^3}=1.19 \frac{8(1.59) 50}{\pi(0.177)^3}=43435 psi \end{aligned} (u)
14 The hook’s fatigue safety factor in torsion is calculated from equation 14.18a (p. 814).
N_{f_s}=\frac{S_{e s}\left(S_{u s}-\tau_i\right)}{S_{e s}\left(\tau_m-\tau_i\right)+S_{u s} \tau_a} (14.18a)
S_{e s}=0.5 \frac{S_{e w} S_{u s}}{S_{u s}-0.5 S_{e w}} (14.18b)
\begin{aligned} N_{f_s} &=\frac{S_{e s}\left(S_{u s}-\tau_{\min }\right)}{S_{e s}\left(\tau_m-\tau_{\min }\right)+S_{u s} \tau_a} \\ &=\frac{26080(163918-43435)}{26080(58637-43435)+163918(15202)}=1.1 \end{aligned} (v)
15 One of these safety factors is less than 1, making this an unacceptable design. To get some idea of what to change to improve it, the model was solved for a list of values of the spring index from 4 to 14, keeping all other parameters as defined above. The resulting values of coil diameter, free length, spring weight, and fatigue safety factor are plotted in Figure 14-24.
The safety factors decrease with increasing spring index, so a reduction in our assumed value for C will improve the design even with no change in wire diameter. Note, however, that the spring free length shows a minimum value at a spring index of about 7.5. The coil diameter increases linearly with the spring index for a constant wire diameter. Spring weight decreases with increasing spring index.
If we decrease the spring index from 9 to 7.5, and increase the wire diameter one size to 0.192 in, keeping all other parameters the same, we will obtain an acceptable design in this case with the smallest N_{f} = 1.2 for the hook in bending.
16 Table 14-14 shows the complete results for this new design. A summary of the new design is
\begin{array}{l} C=7.5 \quad D=1.44 \text { in } \quad K_w=1.20 \quad K_s=1.07\\ \tau_i=15481 psi \quad \tau_{\min }=27631 psi \quad \tau_a=10856 psi \quad \tau_m=37302 psi\\ N_{s_{\text {coil }}}=2.3 \quad N_{f_{s_{c o i l}}}=1.8 \quad N_{f_{s_{\text {hook }}}}=1.7 \quad N_{f_{b_{\text {hook }}}}=1.2 \end{array} (w)
The spring design can now be completed based on the new wire diameter and spring index from step 15.
17 The spring rate is defined from the two specified forces at their relative deflection.
k=\frac{\Delta F}{y}=\frac{85-50}{0.5}=70 lb / \text { in } (x)
18 To get the defined spring rate, the number of active coils must satisfy equation 14.7 (p. 797):
k=\frac{F}{y}=\frac{d^4 G}{8 D^3 N_a} (14.7)
k=\frac{d^4 G}{8 D^3 N_a} \quad \text { or } \quad N_a=\frac{d^4 G}{8 D^3 k}=\frac{(0.192)^4 11.5 E 6}{8(1.44)^3(70)}=9.35 \cong 9 \frac{1}{4} (y)
Note that we round it to the nearest 1/4 coil, as the manufacturing tolerance cannot achieve better than that accuracy. This makes the spring rate k = 70.7 lb/in.
19 The total number of coils in the body and the body length are
\begin{array}{l} N_t=N_a+1=9.25+1=10.25 \\ L_b=N_t d=10.25(0.192)=1.97 in \end{array} (z)
20 The free length can now be determined. The length of a standard hook is equal to the coil inside diameter:
L_f=L_b+2 L_{\text {hook }}=1.97+2(1.25)=4.46 \text { in } (aa)
21 The deflection to reach the larger of the two specified loads is
y_{\max }=\frac{F_{\text {max }}-F_{\text {initial }}}{k}=\frac{85-28}{70.7}=0.81 \text { in } (ab)
22 The natural frequency of this spring is found from equation 14.26 (p. 823) and is
f_n=\frac{2}{\pi N_a} \frac{d}{D^2} \sqrt{\frac{G g}{32 \gamma}} \quad Hz (14.26)
f_n=\frac{2}{\pi N_a} \frac{d}{D^2} \sqrt{\frac{G g}{32 \gamma}}=\frac{2(0.192)}{\pi(9.25)(1.44)^2} \sqrt{\frac{11.5 E 6(386)}{32(0.285)}}=140.6 Hz =8436 rpm (ac)
The ratio between the natural frequency and the forcing frequency is
\frac{8440}{500}=16.9 (ad)
which is sufficiently high.
23 The design specification for this A228 wire spring is
d=0.192 \text { in } \quad O D=1.63 \text { in } \quad N_t=10.25 \quad L_f=4.46 (ae)
24 The results are shown in Table 14-14. The files EX14-05 are on the CD-ROM. There are also alternate approaches to the solution of this example shown in separate Mathcad and TKSolver files on the CD-ROM with a letter added to their name.
* The direct shear factor K_{s} is used rather than the Wahl factor for the mean stress calculation because the stress concentration factor is considered to be 1.0 for mean stress.
Table 14-14a Example 14-5—Design of a Helical Extension Spring for Cyclic Loads Part 1 of 2 |
||||
Input | Variable | Output | Unit | Comments |
500 | fn | rpm | excitation frequency | |
7.50 | C | trial spring index | ||
0.192 | d | in | trial wire diameter (List Function) | |
0.50 | y | in | deflection bet Fmin & Fmax | |
ymax | 0.81 | in | maximum deflection at Fmax | |
ymin | 0.31 | in | minimum deflection at Fmin | |
‘music | matl | ‘music, ‘oiltemp, ‘hdrawn, etc. | ||
85 | Fmax | lb | maximum applied force | |
50 | Fmin | lb | minimum applied force | |
Finit | 28.01 | lb | force from initial tension | |
Flow | 50.00 | lb | lowest applied force on spring | |
Falt | 17.50 | lb | alternating force | |
Fmean | 67.50 | lb | mean force | |
k | 70.70 | lb/in | spring rate with N_{a} rounded | |
N | 9.35 | no. of active coils—exact | ||
Na | 9.25 | no. of active coils—nearest 1/4 coil | ||
Ntot | 10.25 | no. of total coils | ||
D | 1.44 | in | mean coil diameter | |
Dout | 1.63 | in | outside coil diameter | |
Din | 1.25 | in | inside coil diameter | |
Ks | 1.07 | static factor—Eq. 13.8 | ||
Kw | 1.20 | Wahl factor—Eq. 13.9 | ||
tauinit | 15481 | psi | shear stress from initial tension | |
taumin | 27631 | psi | shear stress at Fmin | |
taumax | 46973 | psi | shear stress at Fmax | |
taualt | 10856 | psi | alternating shear stress for fatigue | |
taumean | 37302 | psi | mean shear stress for fatigue | |
Sut | 241441 | psi | tensile strength—Eq. 13.3 & Table 13-4 | |
Sus | 161765 | psi | ultimate shear strength—Eq. 13.4 | |
Ssy | 108648 | psi | shear yield based on Table 13-10 | |
Ssyh | 96576 | psi | shear yield in hook—Table 13-10 | |
Sew | 45000 | psi | wire endurance limit—Eq. 13.12 | |
Ses | 26135 | psi | fully reversed endr. limit—Eq. 13.16b | |
Sy | 181081 | psi | yield strength in bending | |
Se | 39008 | psi | endurance limit in tension |
Table 14-14b Example 14-5—Design of a Helical Extension Spring for Cyclic Loads Part 2 of 2 |
||||
Input | Variable | Output | Unit | Comments |
N_{f} | 1.8 | SF coils—fatigue—Eq. 13.14 | ||
N_{s} | 2.3 | SF coils—static loading at Fmax | ||
N_{fht} | 1.7 | SF hook—torsion fatigue | ||
N_{sht} | 1.8 | SF hook—torsional yielding | ||
N_{fhs} | 1.2 | SF hook—bending fatigue | ||
N_{shs} | 1.8 | SF hook—bending yielding | ||
L_{body} | 1.97 | in | length of coil body | |
hook1 | 1.25 | in | length of hook on one end | |
hook2 | 1.25 | in | length of hook on other end | |
L_{f} | 4.46 | in | free length inside hooks | |
W_{total} | 0.38 | lb | weight of total coils—Eq. 13-11b | |
n_{f} | 140.7 | Hz | natural frequency in Hz | |
c_{rpm} | 8440 | rpm | natural frequency in rpm | |
FreqFac | 16.9 | ratio—nat. freq. to forcing freq. | ||
500 | C_{2} | should be set > 4 | ||
R_{2} | 0.48 | in | side bend radius at hook root | |
K_{hook} | 1.19 | K factor for hook in torsion | ||
t_{maxhook} | 52294 | psi | maximum torsional stress in hook | |
t_{minhook} | 30761 | psi | minimum torsional stress in hook | |
t_{althook} | 10766 | psi | alternating torsional stress in hook | |
t_{mnhook} | 41528 | psi | mean torsional stress in hook | |
C_{1} | 7.50 | spring index for hook |
Table 14-4 Coefficients and Exponents for Equation 14.3 Source: Reference 1 |
|||||||
ASTM# | Material | Range | Exponent b |
Coefficient A | Correlation Factor | ||
mm | in | MPa | psi | ||||
A227 | Cold drawn | 0.5–16 | 0.020–0.625 | –0.182 2 | 1 753.3 | 141 040 | 0.998 |
A228 | Music wire | 0.3–6 | 0.010–0.250 | –0.1625 | 2 153.5 | 184 649 | 0.9997 |
A229 | Oil tempered | 0.5–16 | 0.020–0.625 | –0.183 3 | 1 831.2 | 146 780 | 0.999 |
A232 | Chrome-v | 0.5–12 | 0.020–0.500 | –0.145 3 | 1 909.9 | 173 128 | 0.998 |
A401 | Chrome-s. | 0.8–11 | 0.031–0.437 | –0.093 4 | 2 059.2 | 220 779 | 0.991 |
Table 14-12 Maximum Torsional and Bending Yield Strengths S_{ys} and S_{y} for Helical Extension Springs in Static Applications No Set Removal and Low-Temperature Heat Treatment Applied. Source: Ref. 1 |
|||
Material | Maximum Percent of Ultimate Tensile Strength | ||
[latrex]S_{ys}[/latex] in Torsion | S_{y} in Bending | ||
Body | End | End | |
Cold-drawn carbon steel (e.g., A227, A228) | 45% | 40% | 75% |
Hardened and tempered carbon and low-alloy steel (e.g., A229, A230, A232, A401) | 50 | 40 | 75 |
Austenitic stainless steel and nonferrous alloys (e.g., A313, B134, B159, B197) | 35 | 30 | 55 |

