Question 14.6: Design of a Helical Torsion Spring for Cyclic Loading Proble...

Design of a Helical Torsion Spring for Cyclic Loading

Problem    Design a torsion spring for a dynamic load over a given deflection.

Given    The spring must give a minimum moment of 50 lb-in and a maximum moment of 80 lb-in over a dynamic deflection of 0.25 revolutions (90°). An infinite life is desired.

Assumptions    Use unpeened music wire (ASTM A228). Use 2-in long straight tangent ends. The coil is loaded to close it.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

See Figure 14-27.

1    Assume a 0.192-in trial wire diameter from the available sizes in Table 14-2 (p. 791). Assume a spring index of C = 9 and use it to calculate the mean coil diameter D from equation 14.5 (p. 797).

C=\frac{D}{d}     (14.5)

  D=C d=9(0.192)=1.73  \text { in }        (a)

2    Find the mean and alternating moments:

\begin{array}{c} M_m=\frac{M_{\max }+M_{\min }}{2}=\frac{80+50}{2}=65  lb \\ M_a=\frac{M_{\max }-M_{\min }}{2}=\frac{80-50}{2}=15  lb \end{array}       (b)

3    Find the Wahl bending factor for the inside surface K_{b_i} and use it to calculate the maximum compressive stress in the coil at the inner surface.

K_{b_i}=\frac{4 C^2-C-1}{4 C(C-1)}=\frac{4(9)^2-9-1}{4(9)(9-1)}=1.090         (c)

\sigma_{i_{\max }}=K_{b_i} \frac{32 M_{\max }}{\pi d^3}=1.09 \frac{32(80)}{\pi(0.192)^3}=125523  psi        (d)

4    Find the Wahl bending factor K_{b_o} for the outside surface and calculate the maximum, minimum, alternating, and mean tensile stresses in the coil at the outer surface.

K_{b_o}=\frac{4 C^2+C-1}{4 C(C+1)}=\frac{4(9)^2+9-1}{4(9)(9+1)}=0.9222       (e)

\begin{array}{l} \sigma_{o_{\min }}=K_{b_o} \frac{32 M_{\min }}{\pi d^3}=0.9222 \frac{32(50)}{\pi(0.192)^3}=66359  psi \\ \sigma_{o_{\max }}=K_{b_o} \frac{32 M_{\max }}{\pi d^3}=0.9222 \frac{32(80)}{\pi(0.192)^3}=106175  psi \end{array}      (f)

\begin{aligned} \sigma_{o_{\text {mean }}} &=\frac{\sigma_{o_{\max }}+\sigma_{o_{\min }}}{2}=\frac{66359+106175}{2}=86267 \\ \sigma_{o_{\text {alt }}} &=\frac{\sigma_{o_{\max }}-\sigma_{o_{\min }}}{2}=\frac{66359-106175}{2}=19908 \end{aligned}       (g)

5    Find the ultimate tensile strength of this music-wire material from equation 14.3 and Table 14-4 (p. 792) and use it to find the bending yield strength for the coil body from Table 14-15, assuming no stress relieving.

S_{u t} \cong A d^b       (14.3)

S_{u t}=A d^b=184649(0.192)^{-0.1625}=241441 psi       (h)

S_y=1.0 S_{u t}=241441  psi       (i)

6    Find the wire bending endurance limit for unpeened springs from equation 14.34 and convert it to a fully reversed bending endurance strength with equation 14.35b.

S_{e w_b^{\prime}}=\frac{S_{e w^{\prime}}}{0.577}       (14.34a)

\begin{array}{l} S_{e w_b^{\prime}} \cong \frac{45.0}{0.577}=78  kpsi \quad(537  MPa ) \quad \text {for unpeened springs}\\ S_{e w_b^{\prime}} \cong \frac{67.5}{0.577}=117  kpsi (806  MPa ) \quad \text {for peened springs} \end{array}      (14.43b)

N_{f_b}=\frac{S_e\left(S_{u t}-\sigma_{o_{\text {min }}}\right)}{S_e\left(\sigma_{o_{\text {mean }}}-\sigma_{o_{\text {min }}}\right)+S_{u t} \sigma_{o_{\text {alt }}}}       (14.35b)

S_{e w_b^{\prime}} \cong \frac{45000}{0.577}=77990  psi        (j)

S_e=0.5 \frac{S_{e w_b} S_{u t}}{S_{u t}-0.5 S_{e w_b}}=0.5 \frac{77990(241441)}{241441-0.5(77990)}=46506  psi       (k)

7    The fatigue safety factor for the coils in bending is calculated from equation 14.35a.

N_y=\frac{S_y}{\sigma_{i_{\max }}}     (14.35a)

\begin{aligned} N_{f_b} &=\frac{S_e\left(S_{u t}-\sigma_{o_{\text {min }}}\right)}{S_e\left(\sigma_{o_{\text {mean }}}-\sigma_{o_{\text {min }}}\right)+S_{u t} \sigma_{o_{\text {alt }}}} \\ &=\frac{46506(241441-66359)}{46506(86267-66359)+241441(19908)}=1.4 \end{aligned}       (l)

8    The static safety factor against yielding is

N_{y_b}=\frac{S_y}{\sigma_{i_{\max }}}=\frac{241441}{125523}=1.9          (m)

These are both acceptable safety factors.

9    The spring rate is defined from the two specified moments at their relative deflection.

k=\frac{\Delta M}{\theta}=\frac{80-50}{0.25}=120  lb – in / rev      (n)

10    To get the defined spring rate, the number of active coils must satisfy equation 14.29:

k=\frac{M}{\theta_{\text {rev }}} \cong \frac{d^4 E}{10.8 D N_a}        (14.29)

k=\frac{d^4 E}{10.8 D N_a} \quad \text { or } \quad N_a=\frac{d^4 E}{10.8 D k}=\frac{(0.192)^4 30 E 6}{10.8(1.73)(120)}=18.2        (o)

The ends contribute to the active coils as

N_e=\frac{L_1+L_2}{3 \pi D}=\frac{2+2}{3 \pi(1.73)}=0.25      (p)

and the number of body coils in the spring is

N_b=N_a-N_e=18.2-0.25 \cong 18       (q)

11    The angular deflections at the specified loads from equation 14.28c are

\theta_{r e v} \cong 10.8 \frac{M D N_a}{d^4 E}       (14.28c)

\theta_{\min } \cong 10.8 \frac{M_{\min } D N_a}{d^4 E}=10.8 \frac{50(1.73)(18.2)}{(0.192)^4(30 E 6)}=0.417 rev =150  deg       (r)

\theta_{\max } \cong 10.8 \frac{M_{\max } D N_a}{d^4 E}=10.8 \frac{80(1.73)(18.2)}{(0.192)^4(30 E 6)}=0.667 rev =240  deg         (s)

12    The files EX14-06 can be found on the CD-ROM.

Table 14-4 Coefficients and Exponents for Equation 14.3
Source: Reference 1
ASTM# Material Range Exponent
b
Coefficient A Correlation Factor
mm in MPa psi
A227 Cold drawn 0.5–16 0.020–0.625 –0.182 2 1 753.3 141 040 0.998
A228 Music wire 0.3–6 0.010–0.250 –0.1625 2 153.5 184 649 0.9997
A229 Oil tempered 0.5–16 0.020–0.625 –0.183 3 1 831.2 146 780 0.999
A232 Chrome-v 0.5–12 0.020–0.500 –0.145 3 1 909.9 173 128 0.998
A401 Chrome-s. 0.8–11 0.031–0.437 –0.093 4 2 059.2 220 779 0.991
Table 14-15 Maximum Recommended Bending Yield Strength S_{y} for Helical
Torsion Springs in Static Applications
Source: Adapted from Reference 1
Materia Maximum Percent of Ultimate Tensile Strength
Stress Relieved Favorable Residual Stress
Cold-drawn carbon steel (e.g., A227, A228) 80% 100%
Hardened and tempered carbon and low-alloy steel
(e.g., A229, A230, A232, A401)
85 100
Austenitic stainless steel and nonferrous alloys
(e.g., A313, B134, B159, B197)
60 80
T14-2
F14-27

Related Answered Questions