Question 15.12: Determine (a) the generalized coordinates of the double pend...

Determine
(a) the generalized coordinates of the double pendulum;
(b) the Lagrangian of the system;

(c) the equations of motion;
(d) for m1=m2=m  and l1=l2=lm_{1} = m_{2} = m   and   l_{1} = l_{2} = l;
(e) as (d) for small amplitudes; and
(f) for the case (e) the normal vibrations and frequencies.

15.19
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) The appropriate generalized coordinates are the two angles ϑ1 and  ϑ2ϑ_{1}   and   ϑ_{2} that are related to the Cartesian coordinates by

x1=l1 cos ϑ1,            y1=l1 sin ϑ1,x_{1} = l_{1}   cos  ϑ_{1},                         y_{1} = l_{1}   sin  ϑ_{1},

 

x2=l1 cos ϑ1+l2 cos ϑ2,            y2=l1 sin ϑ1+l2 sin ϑ2.x_{2} = l_{1}   cos  ϑ_{1} + l_{2}  cos  ϑ_{2},                         y_{2} = l_{1}   sin  ϑ_{1} +l_{2}  sin  ϑ_{2}.                                  (15.28)

(b) From (15.28), it follows by differentiation that

x˙1=l1ϑ˙1 sin ϑ1,                y˙1=l1ϑ˙1 cos ϑ1,\dot{x}_{1} =−l_{1} \dot{ϑ}_{1}   sin  ϑ_{1},                 \dot{y}_{1} = l_{1} \dot{ϑ}_{1}   cos  ϑ_{1},

 

x˙2=l1ϑ˙1 sin ϑ1l2ϑ˙2  sin ϑ2,                 y˙2=l1ϑ˙1 cos ϑ1+l2ϑ˙2 cos ϑ2.\dot{x}_{2} =−l_{1}\dot{ϑ}_{1}   sin  ϑ_{1} −l_{2} \dot{ϑ}_{2}   sin  ϑ_{2},                  \dot{y}_{2} = l_{1} \dot{ϑ}_{1}  cos  ϑ_{1} +l_{2} \dot{ϑ}_{2}   cos  ϑ_{2}.

The kinetic energy of the system is

T=12m1(x˙12+y˙12)+12m2(x˙22+y˙22)T = \frac{1}{2} m_{1}(\dot{x}^{2}_{1} + \dot{y}^{2}_{1} )+ \frac{1}{2} m_{2}(\dot{x}^{2}_{2} + \dot{y}^{2}_{2} )

 

=12m1l12ϑ˙12+12m2(l12ϑ˙12+l22ϑ˙22+2l1l2ϑ˙1ϑ˙2 cos(ϑ1ϑ2)).= \frac{1}{2} m_{1}l^{2}_{1} \dot{ϑ}^{2}_{1} + \frac{1}{2} m_{2}\left(l^{2}_{1} \dot{ϑ}^{2}_{1} +l^{2}_{2} \dot{ϑ}^{2}_{2}+2l_{1}l_{2} \dot{ϑ}_{1} \dot{ϑ}_{2}   cos(ϑ_{1} −ϑ_{2})\right).

(Addition theorem!)

To get the potential energy, we adopt a plane as a reference height, at the distance l1+l2l_{1} +l_{2} below the suspension point:

V=m1g[l1+l2l1 cos ϑ1]+m2g[l1+l2(l1 cos ϑ1+l2 cos ϑ2)]V = m_{1}g[l_{1} +l_{2} − l_{1}   cos  ϑ_{1}] +m_{2}g \left[l_{1} +l_{2} − (l_{1}   cos  ϑ_{1} +l_{2}   cos  ϑ_{2})\right].

The Lagrangian then becomes

L = T − V

=12m1l12ϑ˙12+12m2[l12ϑ˙12+l22ϑ˙22+2l1l2ϑ˙1ϑ˙2 cos(ϑ1ϑ2)]= \frac{1}{2} m_{1}l^{2}_{1} \dot{ϑ}^{2}_{1} + \frac{1}{2} m_{2}\left[l^{2}_{1} \dot{ϑ}^{2}_{1} +l^{2}_{2} \dot{ϑ}^{2}_{2}+2l_{1}l_{2} \dot{ϑ}_{1} \dot{ϑ}_{2}   cos(ϑ_{1} −ϑ_{2})\right]

 

m1g[l1+l2l1 cos ϑ1]+m2g[l1+l2(l1 cos ϑ1+l2 cos ϑ2)]-m_{1}g[l_{1} +l_{2} − l_{1}   cos  ϑ_{1}] +m_{2}g \left[l_{1} +l_{2} − (l_{1}   cos  ϑ_{1} +l_{2}   cos  ϑ_{2})\right].                                               (15.29)

(c) The Lagrange equations with ϑ1 and ϑ2ϑ_{1}   and   ϑ_{2} read

ddt(Lϑ˙1)Lϑ1=0,                           ddt(Lϑ˙2)Lϑ2=0.\frac{d}{dt} \left(\frac{∂L}{∂ \dot{ϑ}_{1}}\right) − \frac{∂L}{∂ϑ_{1}}= 0,                            \frac{d}{dt} \left(\frac{∂L}{∂ \dot{ϑ}_{2}}\right) − \frac{∂L}{∂ϑ_{2}}= 0.

One has

Lϑ1=m2l1l2ϑ˙1ϑ˙2  sin(ϑ1 −ϑ2)m1gl1 sin ϑ1m2gl1 sin ϑ1,\frac{∂L}{∂ϑ_{1}} =−m_{2}l_{1}l_{2} \dot{ϑ}_{1} \dot{ϑ}_{2}    sin(ϑ_{1}  −ϑ_{2})−m_{1}gl_{1}   sin  ϑ_{1} −m_{2}gl_{1}   sin  ϑ_{1},

 

Lϑ˙1=m1l12ϑ˙1+m2l12ϑ˙1+m2l1l2ϑ˙2 cos(ϑ1ϑ2),\frac{∂L}{∂ \dot{ϑ}_{1}} = m_{1}l^{2}_{1} \dot{ϑ}_{1}+m_{2}l^{2}_{1} \dot{ϑ}_{1} +m_{2}l_{1}l_{2} \dot{ϑ}_{2}   cos(ϑ_{1} −ϑ_{2}),

 

Lϑ2=m2l1l2ϑ˙1ϑ˙2 sin(ϑ1ϑ2)m2gl2 sin ϑ2,\frac{∂L}{∂ϑ_{2}}= m_{2}l_{1}l_{2} \dot{ϑ}_{1} \dot{ϑ}_{2}   sin(ϑ_{1} −ϑ_{2})−m_{2}gl_{2}   sin  ϑ_{2},

 

Lϑ˙2=m2l22ϑ˙2+m2l1l2ϑ˙1 cos(ϑ1ϑ2).\frac{∂L}{∂ \dot{ϑ}_{2}}= m_{2}l^{2}_{2} \dot{ϑ}_{2}+m_{2}l_{1}l_{2} \dot{ϑ}_{1}   cos(ϑ_{1} −ϑ_{2}).

Thus, the Lagrange equations read

m1l12ϑ¨1+m2l12ϑ¨1+m2l1l2ϑ¨2 cos(ϑ1ϑ2)m2l1l2ϑ˙2(ϑ˙1ϑ˙2)  sin(ϑ1ϑ2)m_{1}l^{2}_{1} \ddot{ϑ}_{1} +m_{2}l^{2}_{1} \ddot{ϑ}_{1} + m_{2}l_{1}l_{2} \ddot{ϑ}_{2}  cos(ϑ_{1} − ϑ_{2})− m_{2}l_{1}l_{2} \dot{ϑ}_{2}(\dot{ϑ}_{1} − \dot{ϑ}_{2})   sin(ϑ_{1} −ϑ_{2})

 

=m2l1l2ϑ˙1ϑ˙2 sin(ϑ1ϑ2)m1gl1 sin ϑ1m2gl1 sin ϑ1=−m_{2}l_{1}l_{2} \dot{ϑ}_{1} \dot{ϑ}_{2}   sin(ϑ_{1} −ϑ_{2})−m_{1}gl_{1}   sin  ϑ_{1} −m_{2}gl_{1}   sin  ϑ_{1}

and

m2l22ϑ¨2+m2l1l2ϑ¨1 cos(ϑ1ϑ2)m2l1l2ϑ˙1(ϑ˙1ϑ˙2)  sin(ϑ1ϑ2)m_{2}l^{2}_{2} \ddot{ϑ}_{2} +m_{2}l_{1}l_{2} \ddot{ϑ}_{1}  cos(ϑ_{1}− ϑ_{2})− m_{2}l_{1}l_{2} \dot{ϑ}_{1}(\dot{ϑ}_{1} − \dot{ϑ}_{2})   sin(ϑ_{1} −ϑ_{2})

 

=m2l1l2ϑ˙1ϑ˙2 sin(ϑ1ϑ2)m2gl2 sin ϑ2=m_{2}l_{1}l_{2} \dot{ϑ}_{1} \dot{ϑ}_{2}   sin(ϑ_{1} −ϑ_{2})−m_{2}gl_{2}   sin  ϑ_{2}

or

(m1+m2)l12ϑ¨1+m2l1l2ϑ¨2 cos(ϑ1ϑ2)+m2l1l2ϑ˙22 sin(ϑ1ϑ2)(m_{1} + m_{2})l^{2}_{1} \ddot{ϑ}_{1} +m_{2}l_{1}l_{2}\ddot{ϑ}_{2}   cos(ϑ_{1} − ϑ_{2})+ m_{2}l_{1}l_{2} \dot{ϑ}^{2}_{2}   sin(ϑ_{1} − ϑ_{2})

 

=(m1+m2)gl1 sin ϑ1=−(m_{1} +m_{2})gl_{1}   sin  ϑ_{1}                              (15.30)

and

m2l22ϑ¨2+m2l1l2ϑ¨1 cos(ϑ1ϑ2)m2l1l2ϑ˙12  sin(ϑ1ϑ2)m_{2}l^{2}_{2} \ddot{ϑ}_{2} +m_{2}l_{1}l_{2} \ddot{ϑ}_{1}  cos(ϑ_{1}− ϑ_{2})− m_{2}l_{1}l_{2} \dot{ϑ}^{2}_{1}   sin(ϑ_{1} −ϑ_{2})

 

=m2gl2 sin ϑ2=−m_{2}gl_{2}   sin  ϑ_{2}

These are the desired equations of motion.

(d) For the case

m1=m2=m        and           l1=l2=l,m_{1} = m_{2} = m                 and                       l_{1} = l_{2} = l,

(15.30) reduce to

2lϑ¨1+lϑ¨2 cos(ϑ1ϑ2)+lϑ˙22 sin(ϑ1ϑ2)=2g  sinϑ1,2l\ddot{ϑ}_{1} + l\ddot{ϑ}_{2}   cos(ϑ_{1} −ϑ_{2})+l\dot{ϑ}^{2}_{2}   sin(ϑ_{1} −ϑ_{2})=−2g   sin ϑ_{1},

 

lϑ¨1 cos(ϑ1ϑ2)+lϑ¨2lϑ˙12 sin(ϑ1ϑ2)=g sin ϑ2.l\ddot{ϑ}_{1}   cos(ϑ_{1} −ϑ_{2})+l\ddot{ϑ}_{2} −l\dot{ϑ}^{2}_{1}   sin(ϑ_{1} −ϑ_{2})=−g   sin  ϑ_{2}.                                            (15.31)

(e) If moreover the oscillations are small, then sin ϑ=ϑ,cos ϑ=1sin  ϑ = ϑ, cos  ϑ = 1, and terms proportional to ϑ˙2\dot{ϑ}_{2} are negligible, which leads to

2lϑ¨1+lϑ¨2=2gϑ1,          lϑ¨1+lϑ¨2=gϑ2.2l\ddot{ϑ}_{1} + l\ddot{ϑ}_{2} =−2gϑ_{1},                     l\ddot{ϑ}_{1} +l\ddot{ϑ}_{2} =−gϑ_{2}.                                         (15.32)

(f) With the ansatz

ϑ1=A1eiωt,              ϑ2=A2eiωtϑ_{1} = A_{1} e^{iωt},                             ϑ_{2} = A_{2}e^{iωt},

we then obtain

2(glω2)A1lω2A2=0,        −lω2A1+(glω2)A2=0.2(g −lω^{2})A_{1} −lω^{2}A_{2} = 0,                −lω^{2}A_{1} +(g −lω^{2})A_{2} = 0.                         (15.33)

To ensure that A1 and A2A_{1}   and   A_{2} do not vanish simultaneously, the determinant of the coefficients must vanish:

2(glω2)lω2lω2glω2=0\begin{vmatrix} 2(g − lω^{2}) & −lω^{2} \\ −lω^{2} & g − lω^{2} \end{vmatrix}=0

and therefore,

l2ω44lgω2+2g2=0l^{2}ω^{4} −4lgω^{2} + 2g^{2} = 0

with the solutions

ω2=4lg±16l2g28l2g22l2=(2±2)gl;ω^{2} = \frac{4lg ± \sqrt{16l^{2}g^{2} −8l^{2}g^{2}}}{2l^{2}} = (2 ±\sqrt{2})\frac{g}{l} ;

i.e.,

ω12=(2+2)gl,          ω22=(22)gl.ω^{2}_{1} = (2 +\sqrt{2})\frac{g}{l},                     ω^{2}_{2} = (2−\sqrt{2})\frac{g}{l} .                                    (15.34)

By inserting (15.34) into (15.33), we obtain

ω12:A2=2A1ω^{2}_{1} : A_{2} =−\sqrt{2} A_{1},                                         i.e., the pendulums oscillate out of phase,

ω22:A2=2A1ω^{2}_{2} : A_{2} =\sqrt{2} A_{1},                                           i.e., the pendulums oscillate in phase.

Related Answered Questions

Question: 15.10

Verified Answer:

Conservation of the center of gravity here reads [...
Question: 15.11

Verified Answer:

Conservation of the center of gravity and of angul...