Question 17.7: Determine the adequacy of a rectangular-cross-section header...

Determine the adequacy of a rectangular-cross-section header with a design pressure of 150 psi and made from a seamless forging with an allowable stress S =12 500 psi. The header inner dimensions are 14 in. by 7.25 in. with a constant thickness of 1 in. All openings are reinforced. Maximum temperature is 100 °F.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

1) Calculate the moment of inertia:

I_{1}=I_{2}=\frac{t^{3}}{12}=\frac{(1)^{3}}{12} =0.0833

2) Calculate bending moment ^{1} at the corner, M_{Q}, using Eq. (17.18):

M_{ Q }=\frac{P}{12}\left(\frac{h^{3} / I_{2}+H^{3} / I_{1}}{h / I_{2}+H / I_{1}}\right)                         (17.18)

M_{ Q }=\frac{150}{12}\left(\frac{(14)^{3} / 0.0833+(7.25)^{3} / 0.0833}{14 / 0.0833+7.25 / 0.0833}\right)

= 1838.28.

3) Calculate bending moment ^{1} at midpoint of long side, M_{M}, using Eq. (17.19):

M_{ M }=M_{ Q }-\frac{P h^{2}}{8}=1838.28-\frac{(150)(14)^{2}}{8}=-1836.72

4) Calculate bending moment at midpoint of short side, M_{N}, using Eq. (17.20):

M_{ N }=M_{ Q }-\frac{P H^{2}}{8}=1838.28 -\frac{(150)(7.25)^{2}}{8}=852.73

5) Calculate bending stress at the corner of long side:

\left(S_{ b }\right)_{ QM }=\frac{(1838.28)(0.5)}{0.0833} = 11,030 psi           (T in).

6) Calculate bending stress at midpoint of long side:

\left(s_{ b }\right)_{ M }=\frac{(-1836.72)(-0.5)}{0.0833} = 11,020 psi           (T out).

7) Calculate bending stress at the corner of short side:

\left(S_{ b }\right)_{ QN } = 11,030 psi           (T in).

8) Calculate bending moment at midpoint of short side:

\left(S_{ b }\right)_{ N }=\frac{(852.73)(0.5)}{0.0833} = 5120 psi        (T in).

9) Calculate membrane stress on long side:

\left(S_{ m }\right)_{ M }=\frac{P H}{2 t}=\frac{(150)(7.25)}{2(1)} = 540 psi.

10) Calculate membrane stress on short side:

\left(S_{ m }\right)_{ N }=\frac{P h}{2 t}=\frac{(150)(14)}{2(1)} = 1050 psi.

11) Total stress at the corner of long side:

\left(S_{ t }\right)_{ QM }=\left(S_{ m }\right)_{ M }+\left(S_{ b }\right)_{ QM }

= 540 + 11,030 = 11,570 psi (T in).

12) Total stress at midpoint of long side:

\left(S_{ t }\right)_{ M }=\left(S_{ m }\right)_{ M }+\left(S_{ b }\right)_{ M } =540+11,020

= 11,560 psi               (T out).

13) Total stress at the corner of short side:

\left(S_{ t }\right)_{ QN }=\left(S_{ m }\right)_{ N }+\left(S_{ b }\right)_{ QN } =1050+11,030

= 12,080 psi            (T in).

14) Total stress at midpoint of short side:

\left(S_{ t }\right)_{ N }=\left(S_{ m }\right)_{ N }+\left(S_{ b }\right)_{ N } =1050+5120

= 6170 psi                (T in).

Since there are no butt welds, E =1.0, and SE = 12,500(1)=12,500 psi. For membrane plus bending, the allowable stress is 1.5SE =1.5(12,500)(1)= 18,750 psi. All stresses are less than allowable stress values, so 1 in. thickness is satisfactory.

Related Answered Questions

Question: 17.5

Verified Answer:

p = 4in. T_{0} = 0.125in.         ...