Question 11.2: Determine the critical load on a steel column having a squar...
Determine the critical load on a steel column having a square cross section 12 mm on a side with a length of 300 mm. The column is to be made of SAE 1040, hot rolled. It will be rigidly welded to a firm support at one end and connected by a pin joint at the other. Also compute the allowable load on the column for a design factor of N = 3.
Learn more on how we answer questions.
Objective Compute the critical buckling load for the column and the allowable load for a design factor of N = 3.
Given L = 300 mm. Cross section is square; each side is b = 12 mm.
One pinned end; one fixed end; column is steel; SAE 1040 hot rolled
From Appendix A–10: s_{y} = 414 MPa; E = 207 GPa = 207 × 10^{9} N/m2
Analysis Use the Method of Analyzing Columns.
A–10 Typical properties of carbon and alloy steels .^{a} | ||||||
Ultimate | Yield | |||||
strength, s_{u} | strength, s_{y} | |||||
Material SAE no. | Condition^{b} | ksi | Mpa | ksi | Mpa | Percent elongation |
1020 | Annealed | 57 | 393 | 43 | 296 | 36 |
1020 | Hot rolled | 65 | 448 | 48 | 331 | 36 |
1020 | Cold drawn | 75 | 517 | 64 | 441 | 20 |
1040 | Annealed | 75 | 517 | 51 | 352 | 30 |
1040 | Hot rolled | 90 | 621 | 60 | 414 | 25 |
1040 | Cold drawn | 97 | 669 | 82 | 565 | 16 |
1040 | WQT 700 | 127 | 876 | 93 | 641 | 19 |
1040 | WQT 900 | 118 | 814 | 90 | 621 | 22 |
1040 | WQT 1100 | 107 | 738 | 80 | 552 | 24 |
1040 | WQT 1300 | 87 | 600 | 63 | 434 | 32 |
1080 | Annealed | 89 | 614 | 54 | 372 | 25 |
1080 | OQT 700 | 189 | 1303 | 141 | 972 | 12 |
1080 | OQT 900 | 179 | 1234 | 129 | 889 | 13 |
1080 | OQT 1100 | 145 | 1000 | 103 | 710 | 17 |
1080 | OQT 1300 | 117 | 807 | 70 | 483 | 23 |
1141 | Annealed | 87 | 600 | 51 | 352 | 26 |
1141 | Cold drawn | 112 | 772 | 95 | 655 | 14 |
1141 | OQT 700 | 193 | 1331 | 172 | 1186 | 9 |
1141 | OQT 900 | 146 | 1007 | 129 | 889 | 15 |
1141 | OQT 1100 | 116 | 800 | 97 | 669 | 20 |
1141 | OQT 1300 | 94 | 648 | 68 | 469 | 28 |
4140 | Annealed | 95 | 655 | 60 | 414 | 26 |
4140 | OQT 700 | 231 | 1593 | 212 | 1462 | 12 |
4140 | OQT 900 | 187 | 1289 | 173 | 1193 | 15 |
4140 | OQT 1100 | 147 | 1014 | 131 | 903 | 18 |
4140 | OQT 1300 | 118 | 814 | 101 | 696 | 23 |
5160 | Annealed | 105 | 724 | 40 | 276 | 17 |
5160 | OQT 700 | 263 | 1813 | 238 | 1641 | 9 |
5160 | OQT 900 | 196 | 1351 | 179 | 1234 | 12 |
5160 | OQT 1100 | 149 | 1027 | 132 | 910 | 17 |
5160 | OQT 1300 | 115 | 793 | 103 | 710 | 23 |
Results Step 1. Determine the end-fixity factor. For the fixed-pinned-end column, K = 0.80 is a practical value (Figure 11–4).
Step 2. Compute the effective length:
L_{e} = KL = 0.80(L)= 0.80(300 mm) = 240 mm
Step 3. Compute the smallest value of the radius of gyration. From Appendix A–1, for a square cross section, r b=/ \sqrt{1} 2. Then,
r = \frac{b}{ \sqrt{12}} = \frac{12 mm}{ \sqrt{12}} = 3.46 mm
Step 4. Compute the slenderness ratio, SR = L_{e} /r:
SR = \frac{L_{e}}{ r} = \frac{KL}{r}=\frac{(0.8)(300 mm)}{ 3.46 mm} = 69.4
Step 5. Normally, we would compute the value of the column constant, C_{c} . But, in this case, let’s use Figure 11–6. For a steel having a yield strength of 414 MPa, C_{c} = 96, approximately.
Step 6. Compare C_{c} with SR and decide if the column is long or short. Then use the appropriate column formula to compute the critical buckling load. Since SR is less than C_{c} , the Johnson formula, Equation (11–6), should be used:
P_{cr} = As_{y}[1- \frac{s_{y}(SR)^{2}}{4 \pi^{2}E} ] (11–6)
The area of the square cross section is
A = b² = (12 mm)² = 144 mm²
Then,
P_{cr} =\left\lgroup144 mm^{2}\right\rgroup \left\lgroup\frac{414 N}{mm^{2}}\right\rgroup [1- \frac{(414 \times 10^{6} N/m^{2})(69.4)^{2}}{4 \pi^{2}(207 \times10^{9} N/m^{2})} ]
P_{cr} = 45.1 kN
Step 7. A design factor of N = 3 is specified.
Step 8. The allowable load, P_{a} , is
P_{a} = \frac{P_{cr}}{N} = \frac{45.1 kN}{3} = 15.0 kN


