Question 13.2: Determine the deflection curve and the deflection of the fre...

Determine the deflection curve and the deflection of the free end of the cantilever shown in Fig. 13.3(a).

F13.3
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The bending moment, M, at any section X is given by

M=-\frac{w}{2} (L-x)^2                                                       (i)

Substituting for M in Eq. (13.3) and rearranging we have

\frac{d^2v}{dx^2} =\frac{M}{EI}                                       (13.3)

EI\frac{d^2v}{dx^2} =-\frac{w}{2} (L-x)^2 = -\frac{w}{2} (L^2 – 2Lx + x^2)                                                                 (ii)

Integration of Eq. (ii) yields

EI\frac{dv}{dx} =-\frac{w}{2} \left(L^2x – Lx^2 + \frac{x^3}{3} \right) +C_1

When x = 0 at the built-in end, v = 0 so that C_1 = 0 and

EI\frac{dv}{dx} =-\frac{w}{2} \left(L^2x – Lx^2 + \frac{x^3}{3} \right)                                                                  (iii)

Integrating Eq. (iii) we have

EIv = -\frac{w}{2} \left(L^2\frac{x^2}{2} – \frac{Lx^3}{3} +\frac{x^4}{12} \right) +C_2

and since v = 0 when x = 0, C_2 = 0. The deflection curve of the beam therefore has the equation

v= – \frac{w}{24 \ EI} (6L^2x^2 – 4Lx^3 + x^4)                                                        (iv)

and the deflection at the free end where x = L is

v_{tip} = -\frac{wL^4}{8EI}                                           (v)

which is again negative and downwards. The applied loading in this case may be easily expressed in mathematical form so that a solution can be obtained using Eq. (13.5), i.e.

\frac{d^4v}{dx^4} = -\frac{w}{EI}                                            (vi)

in which w = constant. Integrating Eq. (vi) we obtain

EI\frac{d^3v}{dx^3} =-wx + C_1

We note from Eq. (13.4) that

\frac{d^3v}{dx^3} = -\frac{S}{EI}     (i.e. −S = − wx + C_1 )

When x = 0, S = −wL so that

C_1 = wL

Alternatively we could have determined C_1 from the boundary condition that when x = L, S = 0.

Hence

EI\frac{d^3v}{dx^3} =-w(x-L)                                                  (vii)

Integrating Eq. (vii) gives

EI\frac{d^2v}{dx^2} =-w\left(\frac{x^2}{2} – Lx \right) + C_2

From Eq. (13.3) we see that

\frac{d^2v}{dx^2} =\frac{M}{EI}

and when x = 0, M = −wL²/2 (or when x = L, M = 0) so that

C_2 = -\frac{wL^2}{2}

and

EI\frac{d^2v}{dx^2} = -\frac{w}{2}(x^2 – 2Lx + L^2)

which is identical to Eq. (ii). The solution then proceeds as before.

Related Answered Questions

Question: 13.20

Verified Answer:

The resultant bending moment diagram is shown in F...
Question: 13.10

Verified Answer:

In this problem an external moment M_0 [/l...