Question 8.3: Determine the eigenfrequencies of the system of three equal ...

Determine the eigenfrequencies of the system of three equal masses suspended between springs with the spring constant k, as is shown in Fig 8.7.
Hint: Consider the solution method of the preceding Exercise 8.2 and Mathematical Supplement 8.4.

8.7
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Fig. 8.7, we extract for the equations of motion

m\ddot{x}_{1} =−kx_{1} −k(x_{1} −x_{2})−k(x_{1} −x_{3}),

 

m\ddot{x}_{2} =−kx_{2} −k(x_{2} −x_{1})−k(x_{2} −x_{3}),

 

m\ddot{x}_{3} =−kx_{3} −k(x_{3} −x_{1})−k(x_{3} −x_{2}),                                          (8.40)

or

m\ddot{x}_{1} +3kx_{1} − kx_{2} −kx_{3} = 0,

 

m\ddot{x}_{2} +3kx_{2} − kx_{3} −kx_{1} = 0,

 

m\ddot{x}_{3} +3kx_{3} − kx_{1} −kx_{2} = 0,                                 (8.41)

We look for the eigenvibrations. All mass points must vibrate with the same frequency. Thus, we adopt the ansatz

x_{1} = A cos(ωt +ψ),                  \ddot{x}_{1} =−ω^{2}A cos(ωt +ψ),

 

x_{2} = B cos(ωt +ψ),                  \ddot{x}_{2} =−ω^{2}B cos(ωt +ψ),

 

x_{3} = C cos(ωt +ψ),                  \ddot{x}_{3} =−ω^{2}C cos(ωt +ψ),

and after insertion into (8.41), we get

(3k −mω^{2})A −kB −kC = 0,

 

−kA +(3k −mω^{2})B −kC = 0,

 

−kA −kB +(3k −mω^{2})C = 0.                                   (8.42)

To get a nontrivial solution of (8.42), the determinant of coefficients must vanish:

\begin{vmatrix} (3k −mω^{2}) & -k & -k \\ -k & (3k −mω^{2}) & -k \\ -k & -k &(3k −mω^{2})  \end{vmatrix}=0

Expansion of the determinant leads to

0 = ω^{6} − \frac{9k}{m} ω^{4} + \frac{24k^{2}}{m^{2}}ω^{2} − \frac{16k^{3}}{m^{3}}

or

0 = Ω^{3} − \frac{9k}{m} Ω^{2} + \frac{24k^{2}}{m^{2}}Ω − \frac{16k^{3}}{m^{3}}

where we substituted Ω= ω^{2} (see Exercise 8.2). The general cubic equation aΩ^{3} +bΩ^{2} + cΩ + d = 0 (in our case a = 1, b =−9k/m, c = 24k^{2}/m^{2}, d =−16k^{3}/m^{3}) can according to Mathematical Supplement 8.4 be reduced to

y^{3} +3py +2q = 0,

where

y = Ω + \frac{b}{3a},               3p=−\frac{1}{3} \frac{b^{2}}{a^{2}} + \frac{c}{a},               2q = \frac{2}{27} \frac{b^{3}}{a^{3}}− \frac{1}{3} \frac{bc}{a^{2}} + \frac{d}{a}.

Insertion leads to

3p=−3 \frac{k^{2}}{m^{2}} ,             2q = 2 \frac{k^{3}}{m^{3}}   ⇒   q^{2} +p^{3} = 0,

i.e., there exist 3 solutions (the real roots); 2 of them coincide. Hence, the vibrating system being treated here is degenerate. As in Exercise 8.2, the solutions can be calculated using tabulated auxiliary quantities. For these, we obtain

cos \varphi =\frac{−q}{\sqrt{−p^{3}}},                 y_{1} = 2 \sqrt{−p}  cos  \frac{\varphi}{3},

 

y_{2} =−2 \sqrt{−p}  cos  \left(\frac{\varphi}{3} + \frac{π}{3}\right),

 

y_{3} =−2 \sqrt{−p}  cos  \left(\frac{\varphi}{3} – \frac{π}{3}\right),

and, after insertion, for the eigenfrequencies of the system

ω_{3} =\sqrt{\frac{k}{m}},                        ω_{1} = ω_{2} = 2 \sqrt{\frac{k}{m}}.

 

Related Answered Questions