Question 20.P.16: Determine the equation of the influence line for the reactio...

Determine the equation of the influence line for the reaction at A in the continuous beam shown in Fig. P.20.16 and determine its value when a load of 30 kN/m covers the span AB.

p20.16
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Release the beam at A and apply a load W as shown in Fig. S.20.16.

Then, R_{B} = 2W.

Using Macauley’s method

\begin{aligned}E I\left(\frac{\mathrm{d}^{2} v}{\mathrm{~d} x^{2}}\right) &=W x-2 W[x-2] \\E I\left(\frac{\mathrm{d} v}{\mathrm{~d} x}\right) &=\frac{W x^{2}}{2}-W[x-2]^{2}+\mathrm{C}_{1} \\E I v &=\frac{W x^{3}}{6}-\frac{W[x-2]^{3}}{3}+\mathrm{C}_{1} x+\mathrm{C}_{2}\end{aligned}

The boundary conditions are: υ = 0 when x = 2 m and 4 m. These give

\mathrm{C}_{1}=\frac{-10 W}{3}, \quad \mathrm{C}_{2}=\frac{16 W}{3}

so that

v=\left(\frac{W}{E I}\right)\left\{\left(\frac{x^{3}}{6}\right)-\frac{[x-2]^{3}}{3}-\left(\frac{10 x}{3}\right)+\frac{16}{3}\right\}

For the R_{A} IL, v = 1 when x = 0

so that

1=\left(\frac{W}{E I}\right)\left(\frac{16}{3}\right)

and

\frac{W}{E I}=\frac{3}{16}

Then

R_{\mathrm{A}}=\left(\frac{3}{16}\right)\left\{\left(\frac{x^{3}}{6}\right)-\frac{[x-2]^{3}}{3}-\left(\frac{10 x}{3}\right)+\frac{16}{3}\right\}

When a udl of 30 kN/m covers the span AB

R_{\mathrm{A}}=30\left(\frac{3}{16}\right) \int_{0}^{2}\left[\left(\frac{x^{3}}{6}\right)-\left(\frac{10 x}{3}\right)+\frac{16}{3}\right] \mathrm{d} x

i.e.

R_{A} = 26.25 kN.

s20.16

Related Answered Questions