Question 6.126: Determine the force in each member of the truss and state if...

Determine the force in each member of the truss and state if the members are in tension or compression.

1
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
⤹ +\Sigma M_A=0 ; \quad D_y(30)-1000(20)=0

D_y=666.7  \mathrm{lb}

\overset{+}\longrightarrow {} \Sigma F_x=0 ; \quad A_x=0 \\ +↑ \Sigma F_y=0 ; \quad A_y-1000+666.7=0

A_y=333.3  \mathrm{lb}

Joint A:

\overset{+}\longrightarrow {} \Sigma F_x=0 ; \quad F_{A B}-F_{A G} \cos 45^{\circ}=0

 

+↑ \Sigma F_y=0 ; \quad 333.3-F_{A G} \sin 45^{\circ}=0

F_{A G}=471  \mathrm{lb}  (\mathrm{C})

F_{A B}=333.3=333  \mathrm{lb}  (\mathrm{T})

Joint B:

\overset{+}\longrightarrow {} \Sigma F_x=0 ; \quad F_{B C}=333.3=333  \mathrm{lb}  (\mathrm{T})

 

+\uparrow \Sigma F_y=0 ; \quad F_{G B}=0

Joint D:

\overset{+}\longrightarrow {} \Sigma F_x=0 ; \quad-F_{D C}+F_{D E} \cos 45^{\circ}=0

 

+↑ \Sigma F_y=0 ; \quad 666.7-F_{D E} \sin 45^{\circ}=0

F_{D E}=942.9  \mathrm{lb}=943  \mathrm{lb}  (\mathrm{C})

F_{D C}=666.7  \mathrm{lb}=667  \mathrm{lb}  (\mathrm{T})

Joint E:

\overset{+}\longrightarrow {} \Sigma F_x=0 ; \quad-942.9 \sin 45^{\circ}+F_{E G}=0

 

+↑ \Sigma F_y=0 ; \quad-F_{E C}+942.9 \cos 45^{\circ}=0

F_{E C}=666.7  \mathrm{lb}=667  \mathrm{lb}  (\mathrm{T})

F_{E G}=666.7  \mathrm{lb}=667  \mathrm{lb}  (\mathrm{C})

Joint C:

+↑ \Sigma F_y=0 ; \quad F_{G C} \cos 45^{\circ}+666.7-1000=0

F_{G C}=471  \mathrm{lb}  (\mathrm{T})

1
1
1

Related Answered Questions

Question: 6.124

Verified Answer:

CB is a two-force member. Member AC: ⤹ +\Si...
Question: 6.121

Verified Answer:

Member AB: ⤹+\Sigma M_A=0 ; \quad-750(2)+B_...
Question: 6.120

Verified Answer:

⤹ +\Sigma M_A=0 ; \quad-3(1.5)-4(2)-10(4)+E...
Question: 6.119

Verified Answer:

⤹+\Sigma M_F=0 ; \quad F_{C D}(7)-\frac{4}{...