Question 6.9: Determine the forced response of the undamped two degree of ...

Determine the forced response of the undamped two degree of freedom system shown in Fig. 6.9, assuming that the force F_{2}(t) = 0.

fig6.9
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

In this case, we have
F = \begin{bmatrix} F_{1} \\ 0 \end{bmatrix},      M = \begin{bmatrix} m_{1} & 0 \\ 0 & m_{2} \end{bmatrix},         K = \begin{bmatrix} k_{1}+k_{2} & -k_{2} \\-k_{2} & k_{2} \end{bmatrix}

that is,
m_{11} = m_{1},         m_{22} = m_{2},             m_{12} = m_{21} = 0\\[0.5 cm]k_{11} = k_{1} + k_{2},       k_{22} = k_{2},         k_{12} = k_{21} = −k_{2}

The constant a of Eq. 6.108 is given by

\left.\begin{matrix} a=& m_{11}m_{22}-m_{12}m_{21}\hspace{90 pt}\\b=& -(m_{11}k_{22}+m_{22}k_{11}-m_{12}k_{21}-m_{21}k_{12})\\ c= & k_{11}k_{22}-k_{12}k_{21}\hspace{110 pt} \end{matrix} \right\}\qquad (6.108)\\[0.5 cm] a = m_{11}m_{22} − m_{12}m_{21} = m_{1}m_{2}

Therefore, the amplitudes \overline{X_1} \text{and}  \overline{X_2}  of Eq. 6.110 are, in this case, given by

\overline{X_{1}} = \frac{1}{a} \frac{F_{1}(k_{22} − ω^{2}_{f} m_{22})}{(ω^{2}_{f} − ω^{2}_{1})(ω^{2}_{f}− ω^{2}_{2})} = \frac{F_{1}(k_{2} − ω^{2}_{f} m_{2})}{m_{1}m_{2}(ω^{2}_{f} − ω^{2}_{1})(ω^{2}_{f}− ω^{2}_{2})}\\[0.5 cm]  \overline{X_{2}} = -\frac{1}{a} \frac{F_{1}(k_{21} − ω^{2}_{f} m_{21})}{(ω^{2}_{f} − ω^{2}_{1})(ω^{2}_{f}− ω^{2}_{2})} = \frac{F_{1}k_{2}}{m_{1}m_{2}(ω^{2}_{f} − ω^{2}_{1})(ω^{2}_{f}− ω^{2}_{2})}

where the natural frequencies ω_1  \text{and}     ω_2 are obtained using the constants of Eq. 6.108 as

\begin{array}{llll} ω^{2}_{1} &=&\frac{−b +\sqrt{b^2 − 4ac}}{2a}\\[0.5 cm]&=&\frac{m_1k_2 + m_2(k_1 + k_2) +\sqrt{[m_1k_2 + m_2(k_1 + k_2)]^2 − 4m_lm_2k_1κ_2}}{2m_1m_2}\\[0.5 cm] ω^{2}_{2}& =& \frac{−b -\sqrt{b^2 − 4ac}}{2a}\\[0.5 cm]&=&\frac{m_1k_2 + m_2(k_1 + k_2) +\sqrt{[m_1k_2 + m_2(k_1 + k_2)]^2 − 4m_lm_2k_1κ_2}}{2m_1m_2}\end{array}

The forced responses, x_1(t)  \text{and}  x_2(t), of the two masses m_1  \text{and}   m_2 can then be written as
x_1(t) = \overline{X_{1}} \sin ω_ft, \qquad x_2(t) =\overline{X_{2}} \sin ω_ft
Plots of the steady state amplitudes \overline{X_{1}}   \text{and}  \overline{X_{2}}  versus the frequency \omega_f are shown in Fig. 6.10. In this figure, the amplitude \overline{X_{1}} approaches zero when ωf approaches \sqrt{k_2/m_2}.

fig6.10

Related Answered Questions

Question: 6.2

Verified Answer:

Since the spring forces balance the weights at the...