Question 7.3: Determine the maximum moment in a simply supported rectangul...

Determine the maximum moment in a simply supported rectangular plate of length a and width b if the applied load is expressed as

q=q_{0} \sin \frac{\pi x}{a} \sin \frac{\pi y}{b}

Let a=60 in., b=25 in., q_{0} =3 psi, and 𝜇 =0.3

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Assume w to be of the form

w=C \sin \frac{\pi x}{a} \sin \frac{\pi y}{b}

This expression satisfies the boundary conditions of w=0 and M =0 at all four edges. Substituting this expression into Eq. (7.17) gives

\frac{\partial^{4} w}{\partial x^{4}}+\frac{2 \partial^{4} w}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} w}{\partial y^{4}}=\frac{q(x, y)}{D}                    (7.17)

C=\frac{q_{0}}{D \pi^{4}\left(1 / a^{2}+1 / b^{2}\right)^{2}}

and the deflection expression becomes

w=\frac{q_{0}}{D \pi^{4}\left(1 / a^{2}+1 / b^{2}\right)^{2}} \sin \frac{\pi x}{a} \sin \frac{\pi y}{b} .

Substituting this expression into Eq. (7.18) gives

M_{x}=-D\left(\frac{\partial^{2} w}{\partial x^{2}}+\mu \frac{\partial^{2} w}{\partial y^{2}}\right)                 (7.18a)

M_{y}=-D\left(\frac{\partial^{2} w}{\partial y^{2}}+\mu \frac{\partial^{2} w}{\partial x^{2}}\right)                              (7.18b)

M_{x y}=D \frac{\partial^{2} w}{\partial x \partial y}                   (7.18c)

 

M_{x}=\frac{q_{0}}{\pi^{2}\left(1 / a^{2}+1 / b^{2}\right)^{2}}\left(\frac{1}{a^{2}}+\frac{\mu}{b^{2}}\right) \sin \frac{\pi x}{a} \sin \frac{\pi y}{b} ,

M_{y}=\frac{q_{0}}{\pi^{2}\left(1 / a^{2}+1 / b^{2}\right)^{2}}\left(\frac{\mu}{a^{2}}+\frac{1}{b^{2}}\right) \sin \frac{\pi x}{a} \sin \frac{\pi y}{b} ,

M_{x y}=\frac{q_{0}(1-\mu)}{\pi^{2}\left(1 / a^{2}+1 / b^{2}\right)^{2} a b} \cos \frac{\pi x}{a} \cos \frac{\pi y}{b} .

The maximum values of M_{x} and M_{y} occur when x=a/2 and y=b/2. A comparison of the factors in parentheses in the expressions for M_{x} and M_{y} indicates that M_{y} will always give a larger value of M_{x} for the given values of a and b. Accordingly, the maximum value of M is given by

M_{\max }=\frac{q_{0}}{\pi^{2}\left(1 / a^{2}+1 / b^{2}\right)^{2}}\left(\frac{\mu}{a^{2}}+\frac{1}{b^{2}}\right)

 

M_{\max }=\frac{3.0}{\pi^{2}\left(1 / 60^{2}+1 / 25^{2}\right)^{2}}\left(\frac{0.3}{60^{2}}+\frac{1}{25^{2}}\right)

= 145.1 in.-lb∕in.

The maximum value of M_{xy} occurs when x=0 and y=0. Hence, the maximum value of M_{xy} is given by

M_{x y}=\frac{3.0(0.7)}{\pi^{2}\left(1 / 60^{2}+1 / 25^{2}\right)^{2}(60)(25)}

= 40.2 in.-lb∕in.

Related Answered Questions