Question 16.12: Determine the member end moments, the support reactions, and...

Determine the member end moments, the support reactions, and the horizontal deflection of joint F of the two-story frame shown in Fig. 16.19(a) by the slope-deflection method.

16.19a
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Degrees of Freedom From Fig. 16.19(a), we can see that the joints C, D, E, and F of the frame are free to rotate, and translate in the horizontal direction. As shown in Fig. 16.19(b), the horizontal displacement of the first-story joints C and D is designated as Δ_1, whereas the horizontal displacement of the second-story joints E and F is expressed as Δ_1 + Δ_2, with Δ_2 representing the displacement of the second-story joints relative to the first-story joints. Thus, the frame has six degrees of freedom—that is, θ_C , θ_D , θ_E , θ_F , Δ_1, and Δ_2.

Fixed-End Moments  The nonzero fixed-end moments are

FEM_{CD} = FEM_{EF} = 200 kN-m

 

FEM_{CD} = FEM_{EF} = 200 kN-m

Chord Rotations See Fig. 16.19(b).

ψ_{AC} = ψ_{BD} = -\frac{Δ_1}{5}

 

ψ_{CE} = ψ_{DF} = -\frac{Δ_2}{5}

 

ψ_{CD} = ψ_{EF} = 0

Slope-Deflection Equations Using I_{column} = I and I_{girder} = 2I , we write

M_{AC} = 0.4EIθ_C + 0.24EIΔ_1                          (1)

M_{CA} = 0.8EIθ_C + 0.24EIΔ_1                         (2)

M_{BD} = 0.4EIθ_D + 0.24EIΔ_1                        (3)

M_{DB} = 0.8EIθ_D + 0.24EIΔ_1                        (4)

M_{CE} = 0.8EIθ_C + 0.4EIθ_E + 0.24EIΔ_2                    (5)

M_{EC} = 0.8EIθ_E + 0.4EIθ_C + 0.24EIΔ_2                 (6)

M_{DF} = 0.8EIθ_D + 0.4EIθ_F + 0.24EIΔ_2                (7)

M_{FD} = 0.8EIθ_F + 0.4EIθ_D + 0.24EIΔ_2                 (8)

M_{CD} = 0.8EIθ_C + 0.4EIθ_D + 200                          (9)

M_{DC} = 0.8EIθ_D + 0.4EIθ_C – 200                          (10)

M_{EF} = 0.8EIθ_E + 0.4EIθ_F + 200                          (11)

M_{FE} = 0.8EIθ_F + 0.4EIθ_E – 200                           (12)

Equilibrium Equations By considering the moment equilibrium of joints C, D, E, and F, we obtain

M_{CA} + M_{CD} + M_{CE} = 0                   (13)

M_{DB} + M_{DC} + M_{DF} = 0                     (14)

M_{EC} + M_{EF} = 0                          (15)

M_{FD} + M_{FE} = 0                          (16)

To establish the remaining two equilibrium equations, we successively pass a horizontal section just above the lower ends of the columns of each story of the frame and apply the equation of horizontal equilibrium (∑F_X = 0) to the free body of the portion of the frame above the section. The free-body diagrams thus obtained are shown in Fig. 16.19(c) and (d). By applying the equilibrium equation ∑F_X = 0 to the top story of the frame (Fig. 16.19(c)), we obtain

S_{CE} + S_{DF} = 40

Similarly, by applying ∑F_X = 0 to the entire frame (Fig. 16.19(d)), we write

S_{AC} + S_{BD} = 120

By expressing column end shears in terms of column end moments as

S_{AC} = \frac{M_{AC} + M_{CA}}{5}                  S_{BD} = \frac{M_{BD} + M_{DB}}{5}

 

S_{CE} = \frac{M_{CE} + M_{EC}}{5}                    S_{DF} = \frac{M_{DF} + M_{FD}}{5}

and by substituting these expressions into the force equilibrium equations, we obtain

M_{CE} + M_{EC} + M_{DF} + M_{FD} = 200               (17)

M_{AC} + M_{CA} + M_{BD} + M_{DB} = 600                      (18)

Joint Displacements Substitution of the slope-deflection equations (Eqs. (1) through (12)) into the equilibrium equations (Eqs. (13) through (18)) yields

2.4EIθ_C + 0.4EIθ_D + 0.4EIθ_E + 0.24EIΔ_1 + 0.24EIΔ_2 = -200                         (19)

0.4EIθ_C + 2.4EIθ_D + 0.4EIθ_F + 0.24EIΔ_1 + 0.24EIΔ_2 = 200                       (20)

0.4EIθ_C + 1.6EIθ_E + 0.4EIθ_F + 0.24EIΔ_2 = -200                      (21)

0.4EIθ_D + 0.4EIθ_E + 1.6EIθ_F + 0.24EIΔ_2 = 200                 (22)

1.2EIθ_C + 1.2EIθ_D + 1.2EIθ_E + 1.2EIθ_F + 0.96EIΔ_2 = 200                           (23)

0.4EIθ_C + 0.4EIθ_D + 0.32EIΔ_1 = 200                        (24)

By solving Eqs. (19) through (24) by the Gauss-Jordan elimination method (Appendix B), we determine

EIθ_C = -203.25 kN-m^2

 

EIθ_D = -60.389 kN-m^2

 

EIθ_E = -197.4 kN-m^2

 

EIθ_F = 88.31 kN-m^2

 

EIΔ_1 = 954.55 kN-m^3       or     Δ_1 = 18.95 mm →

 

EIΔ_2 = 674.24 kN-m^3       or      Δ_2 = 13.4 mm→

Thus, the horizontal deflection of joint F of the frame is as follows:

Δ_F = Δ_1 + Δ_2 = 18.95 + 13.4 = 32.35 mm →

Member End Moments By substituting the numerical values of the joint displacements into the slope-deflection equations (Eqs. (1) through (12)), we obtain

M_{AC} = 147.8 kN-m \circlearrowleft

 

M_{CA} = 66.5 kN-m \circlearrowleft

 

M_{BD} = 204.9 kN-m \circlearrowleft

 

M_{DB} = 180.8 kN-m \circlearrowleft

 

M_{CE} = -79.7 kN-m          or        79.7 kN-m \circlearrowright

 

M_{EC} = -77.4 kN-m           or          77.4 kN-m \circlearrowright

 

M_{DF} = 148.8 kN-m \circlearrowleft

 

M_{FD} = 208.3 kN-m \circlearrowleft

 

M_{CD} = 13.2 kN-m \circlearrowleft

 

M_{DC} = -329.6 kN-m           or          329.6 kN-m \circlearrowright

 

M_{EF} = 77.4 kN-m \circlearrowleft

 

M_{FE} = -208.3 kN-m             or          208.3 kN-m \circlearrowright

Back substitution of the numerical values of member end moments into the equilibrium equations yields

M_{CA} + M_{CD} + M_{CE} = 66.5 + 13.2 – 79.7 = 0                   Checks

M_{DB} + M_{DC} + M_{DF} = 180.8 – 329.6 + 148.8 = 0             Checks

M_{EC} + M_{EF} = -77.4 + 77.4 = 0                  Checks

M_{FD} + M_{FE} = 208.3 – 208.3 = 0                   Checks

M_{CE} + M_{EC} + M_{DF} + M_{FD} = -79.7 – 77.4 + 148.8 + 208.3 = 200                           Checks

M_{AC} + M_{CA} + M_{BD} + M_{DB} = 147.8 + 66.5 + 204.9 + 180.8 = 600                     Checks

Member End Shears and Axial Forces See Fig. 16.19(e).

Support Reactions See Fig. 16.19(f ).

Equilibrium Check The equilibrium equations check.

16.19b
16.19d
16.9e
16.9f

Related Answered Questions

Question: 16.3

Verified Answer:

This beam was previously analyzed in Example 13.6 ...
Question: 16.4

Verified Answer:

Since the moment and shear at end C of the cantile...
Question: 16.8

Verified Answer:

Degrees of Freedom The joints C, D, and E of the f...
Question: 16.10

Verified Answer:

Degrees of Freedom The degrees of freedom are [lat...
Question: 16.11

Verified Answer:

Degrees of Freedom Degrees of freedom are θ...
Question: 16.7

Verified Answer:

Because the beam and the loading are symmetric wit...