Question 16.2: Determine the pressure ratio developed and the specific work...

Determine the pressure ratio developed and the specific work input to drive a centrifugal air compressor of an impeller diameter of 0.5 m and running at 7000 rpm. Assume zero whirl at the entry and T_{1 t}=290 \mathrm{~K} . The slip factor and power input factor to be unity, the process of compression is isentropic and for air c_{p}=1005 J/kg K, \gamma=1.4 .

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The impeller tip speed

U_{2}=\frac{\pi \times 0.5 \times 7000}{60} =183.26 \mathrm{~m} / \mathrm{s} 

With the help of Eqs (16.6) and (16.7), we can write

\frac{T_{2 t}}{T_{1 t}}=\frac{T_{3 t}}{T_{1 t}}=1+\frac{\Psi \sigma U_{2}^{2}}{c_{p} T_{1 t}}                   (16.6)

\frac{p_{3 t}}{p_{1 t}}=\left(\frac{T_{3 t}^{\prime}}{T_{1 t}}\right)^{\frac{\gamma}{\gamma-1}}

 

=\left[1+\frac{\eta_{c}\left(T_{3 t}-T_{1 t}\right)}{T_{1 t}}\right]^{\frac{\gamma}{\gamma-1}}                 (16.7)

Pressure ratio =\left[1+\frac{U_{2}^{2}}{c_{p} T_{1 t}}\right]^{\frac{\gamma}{\gamma-1}}

 

=\left[1+\frac{(183.26)^{2}}{1005 \times 290}\right]^{\frac{1.4}{0.4}}

=1.46

From Eq (16.3),

w=\Psi \sigma U_{2}^{2}                     (16.3)

specific work input =U_{2}^{2}=\frac{(183.26)^{2}}{1000}=33.58 \mathrm{~kJ} / \mathrm{kg}

Related Answered Questions