Question 12.1.1: Determine the steady-state heat distribution in a thin squar...

Determine the steady-state heat distribution in a thin square metal plate with dimensions 0.5 m by 0.5 m using n = m = 4. Two adjacent boundaries are held at 0°C, and the heat on the other boundaries increases linearly from 0°C at one corner to 100°C where the sides meet.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Place the sides with the zero boundary conditions along the x- and y-axes. Then the problem is expressed as

\frac{\partial^{2} u}{\partial x^{2}}(x, y)+\frac{\partial^{2} u}{\partial y^{2}}(x, y)=0

for (x, y) in the set R = {(x, y) | 0 < x < 0.5, 0 < y < 0.5 }. The boundary conditions are

u(0, y) = 0, u(x, 0) = 0, u(x, 0.5) = 200x, and u(0.5, y) = 200y.

If n = m = 4, the problem has the grid given in Figure 12.7, and the difference equation (12.4) is

2\left[\left(\frac{h}{k}\right)^{2}+1\right] w_{i j}-\left(w_{i+1, j}+w_{i-1, j}\right)-\left(\frac{h}{k}\right)^{2}\left(w_{i, j+1}+w_{i, j-1}\right)=-h^{2} f\left(x_{i}, y_{j}\right)                             (12.4)

 

4 w_{i, j}-w_{i+1, j}-w_{i-1, j}-w_{i, j-1}-w_{i, j+1}=0

for each i = 1, 2, 3 and j = 1, 2, 3.

Expressing this in terms of the relabeled interior grid points w_{i}=u\left(P_{i}\right) implies that the equations at the points P_{i} are:

\begin{array}{rr}P_{1}: & 4 w_{1}-w_{2}-w_{4}=w_{0,3}+w_{1,4} \\P_{2}: & 4 w_{2}-w_{3}-w_{1}-w_{5}=w_{2,4} \\P_{3}: & 4 w_{3}-w_{2}-w_{6}=w_{4,3}+w_{3,4}, \\P_{4}: & 4 w_{4}-w_{5}-w_{1}-w_{7}=w_{0,2} \\P_{5}: & 4 w_{5}-w_{6}-w_{4}-w_{2}-w_{8}=0 \\P_{6}: & 4 w_{6}-w_{5}-w_{3}-w_{9}=w_{4,2} \\P_{7}: & 4 w_{7}-w_{8}-w_{4}=w_{0,1}+w_{1,0} \\P_{8}: & 4 w_{8}-w_{9}-w_{7}-w_{5}=w_{2,0} \\P_{9}: & 4 w_{9}-w_{8}-w_{6}=w_{3,0}+w_{4,1},\end{array}

where the right sides of the equations are obtained from the boundary conditions.
In fact, the boundary conditions imply that

\begin{aligned}&w_{1,0}=w_{2,0}=w_{3,0}=w_{0,1}=w_{0,2}=w_{0,3}=0 \\&w_{1,4}=w_{4,1}=25, \quad w_{2,4}=w_{4,2}=50, \quad \text { and } \quad w_{3,4}=w_{4,3}=75\end{aligned}

So the linear system associated with this problem has the form

\left[\begin{array}{rrrrrrrrr}4 & -1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\-1 & 4 & -1 & 0 & -1 & 0 & 0 & 0 & 0 \\0 & -1 & 4 & 0 & 0 & -1 & 0 & 0 & 0 \\-1 & 0 & 0 & 4 & -1 & 0 & -1 & 0 & 0 \\0 & -1 & 0 & -1 & 4 & -1 & 0 & -1 & 0 \\0 & 0 & -1 & 0 & -1 & 4 & 0 & 0 & -1 \\0 & 0 & 0 & -1 & 0 & 0 & 4 & -1 & 0 \\0 & 0 & 0 & 0 & -1 & 0 & -1 & 4 & -1 \\0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 4\end{array}\right]\left[\begin{array}{c}w_{1} \\w_{2} \\w_{3} \\w_{4} \\w_{5} \\w_{6} \\w_{7} \\w_{8} \\w_{9}\end{array}\right]=\left[\begin{array}{r}25 \\50 \\150 \\0 \\0 \\50 \\0 \\0 \\25\end{array}\right] .

The values of w_{1}, w_{2}, \ldots, w_{9} , found by applying the Gauss-Seidel method to this matrix,
are given in Table 12.1.

These answers are exact, because the true solution, u(x, y) = 400xy, has

\frac{\partial^{4} u}{\partial x^{4}}=\frac{\partial^{4} u}{\partial y^{4}} \equiv 0

and the truncation error is zero at each step.

 

Table 12.1

\begin{array}{c|c}\hline i & w_{i} \\\hline 1 & 18.75 \\2 & 37.50 \\3 & 56.25 \\4 & 12.50 \\5 & 25.00 \\6 & 37.50 \\7 & 6.25 \\8 & 12.50 \\9 & 18.75 \\\hline\end{array}

Screenshot 2022-02-04 170007

Related Answered Questions